DOI QR코드

DOI QR Code

Genetic Diversity and Population Structure in East Asian Populations of Plantago asiatica

동아시아 질경이 집단의 유전적 다양성과 집단구조

  • Huh, Man Kyu (Department of Molecular Biology, Dongeui University)
  • 허만규 (동의대학교 분자생물학과)
  • Received : 2013.03.05
  • Accepted : 2013.06.25
  • Published : 2013.06.30

Abstract

Plantago asiatica (Plantaginaceae) is a wind-pollinated plant that grows mainly on fields in East Asia. Starch gel electrophoresis was used to investigate the allozyme diversity and population structure of 18 populations of this species. Although the plantain populations were isolated and patchily distributed, they maintained a high level of genetic diversity; the average percentage of polymorphic loci was 57.1%, the mean number of alleles per locus was 2.07, and the average heterozygosity for 18 populations was 0.201. The combination of a predominant wind-pollinated, mix-mating reproduction, large population sizes, high gene flow between subpopulations, and a propensity for high fecundity may explain the high level of genetic diversity within populations. A direct gradient in overall genetic diversity is associated with latitude. Genetic diversity of P. asiatica is markedly decreased from $35^{\circ}3^{\prime}$ to high latitude and decreased from $35^{\circ}3^{\prime}N$ to low latitude, whereas there does not show a longitudinal gradient in genetic diversity.

질경이(Plantago asiatica)는 주로 동아시아에 분포하는 풍매화 식물이다. 전분 젤 전기영동으로 이 종의 18개 집단에 대한 알로자임 다양성과 집단구조를 평가하였다. 비록 질경이 집단은 작고 격리되어 있지만, 높은 유전적 다양성을 가지고 있었다. 평균 다형성을 나타내는 유전자좌위의 수는 57.1%였고, 대립유전자좌위당 유전자수는 2.07이였으며, 18개 집단에 대한 이형접합성은 0.201이였다. 풍매화, 혼합적 생식교배계, 큰 집단 크기, 집단 간 높은 유전자 이동, 다산의 특성이 집단 내 유전적 다양성을 설명할 수 있다. 유전적 다양성은 위도와 관련이 있었는데 질경이 집단은 북위 $35^{\circ}3^{\prime}$를 초과하면 유전적 다양성은 현저하게 감소하였다. 반면에 유전적 다양성에 대한 경도 구배는 나타나지 않았다.

Keywords

References

  1. Charlesworth, D. 1993. Why are unisexual flowers associated with wind pollination and unspecialized pollinators? Am Nat 141, 481-490. https://doi.org/10.1086/285485
  2. Godt, M. J. W. and Hamrick, J. L. 1993. Genetic diversity and population structure in Tradescantia hirsuticaulis (Commelinae). Am J Bot 80, 959-966. https://doi.org/10.2307/2445517
  3. Godt, M. J. W. and Hamrick, J. L. 1998. Allozyme diversity in the endangered pitcher plant Sarracenia rubra ssp. alabamensis (Sarraceniaceae) and its close relative S. rubra ssp. rubra. Am J Bot 85, 802-810. https://doi.org/10.2307/2446415
  4. Goudet, J. 1995. FSTAT v-1.2: a computer program to calculate F-statistics. J Hered 86, 485-486.
  5. Hamrick, J. L. and Godt, M. J. W. 1989. Allozyme diversity in plant species, pp. 43-63. In: Brown, A. H. D., Clegg, M. T., Kahler, K. L. and Weir, B. S. (eds.), Plant Population Genetics, Breeding, and Genetic Resources. Sinauer: Sunderland, MA.
  6. Hamrick, J. L., Godt, M. J. W. and Sherman-Broyles, S. L. 1992. Factors influencing levels of genetic diversity in woody plant species. New Forests 6, 95-124. https://doi.org/10.1007/BF00120641
  7. Hartl, D. L. and Clark, A. G. 1989. Principles of Population Genetics, pp. 682, 2nd ed., Sinauer: Sunderland, MA.
  8. Kim, Y. S. 1975. Taxonomic study on genus Plantago in Korea. The Sciences and Technologies, Korea University 16, 39-71.
  9. Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70, 3321-3323. https://doi.org/10.1073/pnas.70.12.3321
  10. Nei, M. 1977. F-statistics and analysis of gene diversity in subdivided populations. Ann Hum Genet 41, 225-233. https://doi.org/10.1111/j.1469-1809.1977.tb01918.x
  11. Nevo, E., Beiles, A. and Ben-Shlomo, R. 1984. The evolutionary significance of genetic diversity: ecological, demographic and life history correlates, pp. 13-21. In: Many, G. S. (ed.), Evolutionary Dynamics of Genetic Diversity. Springer:Berlin.
  12. Palacieos, I. S., Molina, R. T. and Rodriguez, M. 2000. Influence of wind direction on pollen concentration in the atmosphere. Int J Biometeorol 44, 128-133. https://doi.org/10.1007/s004840000059
  13. Smouse, P. E., Long, J. C. and Sokal, R. R. 1986. Multiple regression and correlation extensions of the Mantel test of matrix correspondence. System Zool 35, 627-632. https://doi.org/10.2307/2413122
  14. Soltis, D. E., Haufer, H., Darrow, D. C. and Gastony, G. J. 1983. Starch gel electrophoresis of ferns: A compilation of grinding buffers, gel and electrode buffers, and staining schedules. Am Fern J 73, 9-27. https://doi.org/10.2307/1546611
  15. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. 2011. MEGA5: Molecular Evolutionary Genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28, 2731-2739. https://doi.org/10.1093/molbev/msr121
  16. Van Dijk, H. 1989. Genetic variability in Plantago species in relation to their ecology. 1. Ecotypic differentiation in P. major. Theor Appl Genet 77, 749-759. https://doi.org/10.1007/BF00261254
  17. Van Dijk, H. and Van Delden, W. 1981. Genetic variability in Plantago species in relation to their ecology. 1. Genetic analysis of the allozyme variation in P. major subspecies. Theor Appl Genet 60, 285-290. https://doi.org/10.1007/BF00263720
  18. Van Dijk, H., Wolff, K. and De Vries, A. 1988. Genetic variability in Plantago species in relation to their ecology. 3. Genetic structure of populations of P. major, P. major and P. major. Theor Appl Genet 75, 518-528. https://doi.org/10.1007/BF00276760
  19. Weir, B. S. and Cockerham, C. C. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358-1370. https://doi.org/10.2307/2408641
  20. Wolff, K. 1991. Genetic analysis of morphological variability in three Plantago species with different mating systems. Theor Appl Genet 81, 111-118.
  21. Wolff, K., Rogstad, S. H. and Schaal, B. A. 1994. Population and species variation of minisatellite DNA in Plantago. Theor Appl Genet 87, 733-740.
  22. Wolff, K. and Morgan-Richards, M. 1998. PCR markers distinguish Plantago species. Theor Appl Genet 96, 282-286. https://doi.org/10.1007/s001220050737
  23. Woodland, D. W. 1991. Contemporary Plant Systematics, pp. 222, Prentice-Hall, Inc.: Englewood Cliffs.
  24. Workman, P. L. and Niswander, J. D. 1970. Population studies on southern Indian tribes.II. Local genetic differentiation in the Papago. Am J Hum Genet 22, 24-49.
  25. Wright, S. 1965. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19, 395-420. https://doi.org/10.2307/2406450
  26. Yeh, F. C., Yang, R. C. and Boyle, T. 1999. POPGENE. Version 1.31, Microsoft Windows-based Freeware for Population Genetic Analysis.

Cited by

  1. Plant–plant interactions mediate the plastic and genotypic response ofPlantago asiaticato CO2: an experiment with plant populations from naturally high CO2areas vol.117, pp.7, 2016, https://doi.org/10.1093/aob/mcw064