• Title/Summary/Keyword: Alloying Elements

Search Result 409, Processing Time 0.027 seconds

Effects of Alloying Elements on the Mechniacal Properties of Hardened and Austempered 3.60%C-2.50wt%Si Ductile Cast Irons (3.60wt%C-2.50wt%Si 구상흑연주철의 경화 및 오스템퍼링 처리시 기계적 성질에 미치는 합금 원소의 영향)

  • Park, Jung-Jee;Seo, Gap-Sung;Kwon, Hae-Wook
    • Journal of Korea Foundry Society
    • /
    • v.28 no.6
    • /
    • pp.273-281
    • /
    • 2008
  • Effects of alloying elements on the mechanical properties of hardened and austempered 3.60wt%C - 2.50wt%C ductile cast iron were investigated. Strength and hardness were increased and ductility was decreased as the amount of alloying element increased. The increasing effect of copper addition on the strength was the most pronounced. The strength and hardness were greatly increased and ductility was decreased by hardening. The effect of alloying element on the mechanical properties of the hardened ductile cast iron was not so pronounced due to the high contents of C and Si. The strength and hardness of austempered ductile cast iron were greatly increased, meanwhile the difference of strength from that of hardened one was not so big. The ductility of the former was higher than that of the latter. The strength and ductility of austempered ductile cast iron with 0.25%Mn were the maximum of all Mn added ones. The maximum strength of that was obtained with the addition of 0.80wt%Cu or 2.00wt%Ni along with this amount of Mn added.

Effect of Alloying Elements on the Wear Resistance of Austempered Ductile Iron (오스템퍼링 처리한 구상흑연주철(ADI)의 내마모성에 미치는 합금원소의 영향에 관한 연구)

  • Lee, Sang-Hak;Kim, Hong-Beom;Kim, Jong-Chul;Chun, Byung-Wook;Kim, Chang-Gyu;Choi, Chang-Ock
    • Journal of Korea Foundry Society
    • /
    • v.19 no.1
    • /
    • pp.24-32
    • /
    • 1999
  • A series of investigations for Austempered Ductile Iron (ADI) castings were carried out by using the specimens with various chemical compositions and heat treatment conditions. The rolling wear characteristics of alloyed austempered ductile irons under an unlubricated dry rolling condition was evaluated by the Amsler type test with 9.09% sliding ratio. Generally, the wear amount was increased with the austempering temperature and decreased when the hardness of the matrix was higher. The alloying elements also influenced the austempering reaction, the microstructure and the mechanical properties. In this study, the mechanical properties (i.e.) ultimate tensile strength (UTS), hardness, elongation) and the wear resistance are analysed to show the relationship between the alloying elements and the austempering temperatures. Mo, Cu and Ni are alloyed individually or in combination. It has been found that when Cu and Ni alloyed individually to a casting, the wear amount is increased than others with elements alloyed in combination. The amount of rolling wear loss was decreased when Mo was alloyed in cast iron, individually or in combination.

  • PDF

Practical Model for Predicting Beta Transus Temperature of Titanium Alloys

  • Reddy, N.S.;Choi, Hyun Ji;Young, Hur Bo
    • Korean Journal of Materials Research
    • /
    • v.24 no.7
    • /
    • pp.381-387
    • /
    • 2014
  • The ${\beta}$-transus temperature in titanium alloys plays an important role in the design of thermo-mechanical treatments. It primarily depends on the chemical composition of the alloy and the relationship between them is non-linear and complex. Considering these relationships is difficult using mathematical equations. A feed-forward neural-network model with a back-propagation algorithm was developed to simulate the relationship between the ${\beta}$-transus temperature of titanium alloys, and the alloying elements. The input parameters to the model consisted of the nine alloying elements (i.e., Al, Cr, Fe, Mo, Sn, Si, V, Zr, and O), whereas the model output is the ${\beta}$-transus temperature. The model developed was then used to predict the ${\beta}$-transus temperature for different elemental combinations. Sensitivity analysis was performed on a trained neural-network model to study the effect of alloying elements on the ${\beta}$-transus temperature, keeping other elements constant. Very good performance of the model was achieved with previously unseen experimental data. Some explanation of the predicted results from the metallurgical point of view is given. The graphical-user-interface developed for the model should be very useful to researchers and in industry for designing the thermo-mechanical treatment of titanium alloys.

Effect of Alloying Element Addition on the Microstructure and Wear Properties of Die-casting ADC12 Alloy (ADC12 다이캐스팅 합금의 미세조직 및 기계적 특성에 미치는 개량 원소 첨가의 영향)

  • Kang, Y.J.;Yoon, S.I.;Kim, D.H.;Lee, K.A.
    • Transactions of Materials Processing
    • /
    • v.28 no.1
    • /
    • pp.34-42
    • /
    • 2019
  • In this study, various alloying elements (Cr, Sr, Ca, Cd) were added to improve the mechanical properties of ADC12 fabricated by a die casting process. The effect of alloying elements on the microstructure and mechanical properties were investigated. The phase analysis results of the modified ADC12 alloy with conventional ADC12 alloy, showed the similar characteristics of Al matrix, Si phase, $CuAl_2$ phase and the Fe intermetallic phase. As a result of the microstructure observation, the secondary dendrite arm spacing (SDAS) was shown to have decreased after the addition of the alloying elements. The eutectic Si phase, which existed as flake form in the conventional ADC12 alloy, was modified finely as a fiber form in the modified ADC12 alloy. It was observed that the $CuAl_2$ phase as the strengthening phase was relatively finely distributed in the modified ADC12 alloy. The Fe intermetallic appeared as a Chinese script shaped $Al_6$ (Mn,Fe) which is detrimental to mechanical properties in conventional ADC12 alloy. On the other hand, in the modified ADC12 alloy, polyhedral ${\alpha}-Al_{15}Si_2$ $(Fe,Mn,Cr)_3$ was observed. The tensile properties were improved in the modified ADC12 alloy. The yield strength and tensile strength increased by 12.4% and 10.0%, respectively, in the modified ADC12 alloy, and the elongation was also seen to have been increased. As a result of the pin on disk wear test, the wear resistance properties were also improved by up to about 7% in the modified ADC12 alloy. It is noted that the wear deformation microstructures were also observed, and it was found that the fine eutectic Si and strengthening phases greatly improved abrasion resistance.

Effect of Alloying Elements of Si, Mn, Ni, and Cr on Oxidation of Steels between 1050℃ and 1200℃ in Air (강의 대기 중 1050~1200℃의 산화에 미치는 합금원소 Si, Mn, Ni, Cr의 영향)

  • Lee, Dong Bok
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.4
    • /
    • pp.300-309
    • /
    • 2012
  • Low-carbon steels and a stainless steel were oxidized isothermally and cyclically between $1050^{\circ}C$ and $1200^{\circ}C$ for up to 100 min in air to find the effect of alloying elements of Si, Mn, Ni, and Cr on their oxidation. The most active alloying element of Si was scattered inside the oxide scale, at the scale-alloy interface and as internal oxide precipitates beneath the oxide scale. Manganese, which could not effectively improve the oxidation resistance, was rather uniformly distributed in the oxide scale. Nickel and chromium tended to present at the lower part of the oxide scale. Excessively thick porous scales formed on the low-carbon steels, whereas thin but non-adherent scales containing $Cr_2O_3$ formed on the stainless steel.

Spatial Distributions of Alloying Elements Obtained from Atom Probe Tomography of the Amorphous Ribbon Fe75C11Si2B8Cr4

  • Shin, Jinkyung;Yi, Seonghoon;Pradeep, Konda Gokuldoss;Choi, Pyuck-Pa;Raabe, Dierk
    • Korean Journal of Materials Research
    • /
    • v.23 no.3
    • /
    • pp.190-193
    • /
    • 2013
  • Spatial distributions of alloying elements of an Fe-based amorphous ribbon with a nominal composition of $Fe_{75}C_{11}Si_2B_8Cr_4$ were analyzed through the atom probe tomography method. The amorphous ribbon was prepared through the melt spinning method. The macroscopic amorphous natures were confirmed using an X-ray diffractometer (XRD) and a differential scanning calorimeter (DSC). Atom Probe (Cameca LEAP 3000X HR) analyses were carried out in pulsed voltage mode at a specimen base temperature of about 60 K, a pulse to base voltage ratio of 15 %, and a pulse frequency of 200 kHz. The target detection rate was set to 5 ions per 1000 pulses. Based on a statistical analyses of the data obtained from the volume of $59{\times}59{\times}33nm^3$, homogeneous distributions of alloying elements in nano-scales were concluded. Even with high carbon and strong carbide forming element contents, nano-scale segregation zones of alloying elements were not detected within the Fe-based amorphous ribbon. However, the existence of small sub-nanometer scale clusters due to short range ordering cannot be completely excluded.

Effects of Sulfuric Acid Concentration and Alloying Elements on the Corrosion Resistance of Cu-bearing low Alloy Steels

  • Kim, Ki Tae;Kim, Young Sik
    • Corrosion Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.154-165
    • /
    • 2018
  • During the process of sulfur dioxide removal, flue gas desulfurization equipment provides a serious internal corrosion environment in creating sulfuric acid dew point corrosion. Therefore, the utilities must use the excellent corrosion resistance of steel desulfurization facilities in the atmosphere. Until now, the trend in developing anti-sulfuric acid steels was essentially the addition of Cu, in order to improve the corrosion resistance. The experimental alloy used in this study is Fe-0.03C-1.0Mn-0.3Si-0.15Ni-0.31Cu alloys to which Ru, Zn and Ta were added. In order to investigate the effect of $H_2SO_4$ concentration and the alloying elements, chemical and electrochemical corrosion tests were performed. In a low concentration of $H_2SO_4$ solution, the major factor affecting the corrosion rate of low alloy steels was the exchange current density for $H^+/H_2$ reaction, while in a high concentration of $H_2SO_4$ solution, the major factors were the thin and dense passive film and resulting passivation behavior. The alloying elements reducing the exchange current density in low concentration of $H_2SO_4$, and the alloying elements decreasing the passive current density in high concentration of $H_2SO_4$, together play an important role in determining the corrosion rate of Cu-bearing low alloy steels in a wide range of $H_2SO_4$ solution.

Effects of Alloying Elements on the High Pressure Wear Characteristics of Ductile Cast Iron I-Cu, Mn (구상흑연주철의 고압하 마멸특성에 미치는 합금원소의 영향 I-Cu, Mn)

  • Bang, Woong-Ho;Kang, Choon-Sik;Park, Jae-Hyun;Kweon, Young-Gak
    • Journal of Korea Foundry Society
    • /
    • v.20 no.4
    • /
    • pp.230-239
    • /
    • 2000
  • High pressure wear characteristics of DCI(Ductile Cast Iron) were investigated through unlubricated pin-on-disc wear test. Wear test were carried out at speed of 23m/min, under pressure of 3MPa and 3.3 MPa. Cu and/or Mn were added to examine the effect of alloying elements on the high pressure wear characteristics of DCI. To investigate the relationship between wear characteristics and mechanical properties of DCI, Brinell hardness and V-notched Charpy impact energy were tested. Wear surface of each specimen was observed by SEM to determine the wear mechanism of DCI under high pressure wear condition. In the mild wear region, wear characteristics of alloyed DCI specimens were very similar to that of unalloyed DCI. But mild-severe wear transition was occurred at different wear distance and wear rate of DCI specimens were changed by alloying elements. In severe wear condition, wear rate of DCI was dramatically increased by the addition of Mn. Although the addition of Cu 0.46wt% did not decrease the wear rate of DCI in the severe wear region, but it delayed the mild-severe wear transition. Under high pressure wear condition, wear rate and mild-severe wear transition were not concerned with hardness of DCI specimens, but they were deeply associated with impact energy changed by alloying elements.

  • PDF

Microstructures and Elastic Moduli of the Alloys Containing the Biocompatible Alloying Elements (생체 친화적인 원소를 함유한 티타늄합금의 미세조직과 탄성계수)

  • Jeong, Hui-Won;Kim, Seung-Eon;Hyeon, Yong-Taek;Lee, Yong-Tae
    • 연구논문집
    • /
    • s.33
    • /
    • pp.157-165
    • /
    • 2003
  • New titanium alloys with a low elastic modulus have been developed for biomedical applications to avoid the stress shielding effect of the artificial prosthesis. The newly developed alloys contained the transition elements like Zr, Hf, Nb, Ta which were non-cytotoxicity elements and $\beta$ stabilizers. In the present paper the elastic moduli of Ti-xM containing Zr, Hf, Nb, Ta were evaluated by measuring the acoustic velocity (PEG). The effectiveness of the alloying elements for lowering the elastic modulus was investigated. In addition, the dominant factors for the low modulus were discussed. Ta was the most effective in lowering the elastic modulus of the alloys. The effectiveness of Hf was not acceptable for decreasing the elastic modulus. The dominant factor was the lattice parameter for Zr, and the poisson's ratio for Nb, Ta, respectively.

  • PDF