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Abstract The β-transus temperature in titanium alloys plays an important role in the design of thermo-mechanical treatments.

It primarily depends on the chemical composition of the alloy and the relationship between them is non-linear and complex.

Considering these relationships is difficult using mathematical equations. A feed-forward neural-network model with a back-

propagation algorithm was developed to simulate the relationship between the β-transus temperature of titanium alloys, and the

alloying elements. The input parameters to the model consisted of the nine alloying elements (i.e., Al, Cr, Fe, Mo, Sn, Si, V,

Zr, and O), whereas the model output is the β-transus temperature. The model developed was then used to predict the β-transus

temperature for different elemental combinations. Sensitivity analysis was performed on a trained neural-network model to study

the effect of alloying elements on the β-transus temperature, keeping other elements constant. Very good performance of the

model was achieved with previously unseen experimental data. Some explanation of the predicted results from the metallurgical

point of view is given. The graphical-user-interface developed for the model should be very useful to researchers and in industry

for designing the thermo-mechanical treatment of titanium alloys.
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1. Introduction

Increased use of titanium alloys is occurring due to their

lower modulus, superior biocompatibility, and strength to

weight ratio and enhanced corrosion resistance. The major

phases present in titanium alloys are alpha(hcp) and beta

(bcc). The final microstructure and mechanical properties

depend heavily on the thermo mechanical processing

(TMP) route. The β-transus temperature(at which alpha +
beta phase converts to beta phase) plays a key charac-

teristic role in TMP. A wide variety of microstructure can

be obtained depending on the materials is processed above

or below β-transus temperature. Beta transus temperature
is the basic reference point to design a treatment. Hence

the estimation of beta transus temperature is very impor-

tant and crucial. Determination of β-transus temperature
is time consuming, expensive and laborious. β-transus
temperature is sensitive to alloy composition and esti-

mation of the relationship between β-transus temperature
and alloying elements is vital. There are number of

regression models are developed to relate between the

composition and β-transus temperature and their predic-
tions are limited use and the results differing with

others.1-4) Biologically inspired artificial neural networks

(ANN’s) modeling tools is an alternative and the

application of ANN’s in materials science field grown

exponentially.5-7) The advantage of ANNs is that relation-

ship need not be specified in advance and do not require

any assumptions since the method itself establishes rela-

tionship through training process. They are particularly

valuable where inputs are related or missing or the systems

are nonlinear. Guo et al. used neural networks model

to predict β-transus temperature by using commercial
MATLAB software.8) Those predictions are few deviations

from experimental values and they claimed, it is due to

insufficient data. First author predicted beta transus tem-

perature by extrapolation of beta phase volume fraction

as a function of Al, V, Fe, O, N and heat treatment

temperature. Hence our main objective is to build a

practical, reliable, and effective model to minimize the

experiments required to determine β-transus temperature.
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2. Materials and Methods

2.1 Materials

Modeling system for the beta transus temperature of

titanium alloys has been developed by correlating nine

alloying elements Al, Cr, Fe, Mo, Sn, Si, V, Zr, and O.

The database for beta transus was compiled of alpha,

alpha + beta, beta titanium alloys9-12) and Prof. W. Sha

shared the compiled database.8) The statistics of the data

was shown in Table 1. A total of 201 data sets were used

for developing the model and the ranges of the alloys

were vast. 

2.2 Brief explanation about neural networks model

In the present work, feed forward neural networks

(FFNN) with back propagation algorithm(BPA) was em-

ployed and the details were summarized elsewhere.13,14)

The model was implemented using the programming

languages C and Java. Fig. 1 shows the schematic diagram

of the present problem. It consists of nine nodes re-

presenting composition at input layer and one node at

output layer. In between these two layers are the hidden

layers with number of nodes. The actual number of

hidden layers and hidden nodes depends on the system

and acceptable level of the model. Hidden layers are

necessary to map nonlinear relationship in the system.

The BPA allows to learning input - output mapping from

the training samples. The training process is accomplished

in two passes(forward and backward) through the

network. In the forward pass, an input pattern is fed, and

the outputs of all neurons in each layer are computed by

choosing the initial weights(randomly generated small

values in between −0.5 to +0.5). The error in the output
layer is found by comparing the output with the target

value. In the backward pass the weights are suitably

updated so to minimize the overall training error. In doing

so, two parameters, called learning rate and momentum

factor are introduced for controlling the size of the

weights adjustment along the descent direction. These two

parameter values(in between 0.1 to 0.9) are empirically

chosen. For all patterns, p, the global error function,

Mean sum Squared Error(MSE) is given by:

where, Tip is the target output and Oip is the calculated

output for the ith input neuron for the pth pattern

respectively. The error function is minimized as follows:

1st Step: All weights initialized to small random values,

which also incorporate bias term. 

2nd Step: The network is provided with input and the

desired output pairs from the training sets, learning rate,

momentum term, hidden layers and number of hidden

nodes in hidden layers 

3rd Step: Output is calculated using sigmoid threshold

function. The differences between calculated and experi-

mental outputs were measured.

MSE
1

p
--- Tip Oip–( )

2

i
∑

p
∑=

Table 1. Statistical analysis of the input and output variables(concentration in wt%) used for model development.

Variable Number of alloys containing this element Min Max Average Standard deviation

Al 135 0 9.6 3.22 2.64

Cr 48 0 11.2 0.92 2.1

Fe 109 0 5 0.29 0.67

Mo 100 0 16.08 2.66 4

Sn 42 0 11 0.66 1.59

Si 34 0 0.5 0.03 0.09

V 64 0 20.16 2.51 4.59

Zr 41 0 11 0.12 0.13

O 152 0 0.9 0.12 0.13

β-transus(
o

C) 201 670 1080 892.2 100.4

Fig. 1. Schematic diagram representing neural networks model.
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4th Step: Weights are adjusted by using a BPA that starts

from the output layer back to the input layer. The overall

procedure is repeated iteratively commencing from 2nd step

till the error reached to the desired minimum.

2.3 Performing sensitivity analysis on trained neural

networks model

The optimal parameters required for the model are

determined based on MSE and the average error in

output prediction of the trained data.15,16) Average error in

output prediction will helps to avoid over fitting. Mean

square error of 0.00001 and average error of 2.24 was

achieved after 118662 iterations with two hidden layers

consist of 12 hidden nodes in each layer with the learning

rate of 0.4 and momentum term of 0.9. The model with

this architecture is used for prediction and analysis of

beta transus temperature. Many alloy developments were

based on alloying elements relations and interactions.

The model can be used to calculate the beta transus

temperature by performing sensitivity analysis at various

chemical compositions. Introduction to sensitivity analysis

and performing the sensitivity analysis on trained neural

network model was well recorded and reported in earlier

publications.15-22) In the present work the sensitivity analysis

calculated in two ways: varying one input parameter and

varying two input parameters while keeping other

elements constant(zero) and studying their influences on

output. The instantaneous sensitivity, , of kth output

with respect to jth input, can be evaluated at each operating

point P, as follows:

where, 

∆oK = f(uj + ∆uj) − f(uj)

f( ) being realized in the model,

= Nominal value of jth input variable at operating

point P, 

= Corresponding nominal value of kth output variable

at operating point P,

∆uj = Very small increment in the nominal value of jth

input variable.

3. Results

The performance of the model was evaluated by pre-

dicting beta transus temperature from 57 new unseen

experimental data from our previous work16) and other

sources.23,24) The comparison between the predicted and

experimental beta transus temperature and the respective

percentage errors were shown in Table 2. 

Estimation of phase diagram of binary Ti-X(X = Al, V,

Mo and O) and Ti-Al-V-Cr systems: The complete pre-

dictions of the model are voluminous, hence representative

predictions were shown. The neural networks models are

based on data and equations. Hence, the reason behind

the predictions will be tried to explain. Fig. 2 represents

the screen shots of graphical user interface designed for

beta transus temperature. Binary phase Ti-Al, Ti-V, Ti-

Mo and Ti-O were calculated by performing sensitivity

analysis on trained model and compared with the experi-

mental. Fig. 4 shows hypothetical multiphase titanium

alloy, Ti-Al-V-Cr systems predicted by model. The beta

transus temperature varied as a function of aluminum and

vanadium content at different chromium additions and

fixing other alloying elements to zero.

4. Discussions

The % error in prediction is less than 4.5 % for 47 data

sets and in the case of 10 data sets, the error range is

higher as shown in Table 2. In the case of 28 data sets

belongs to alpha + beta alloys the predictions are precise

and the error is less than 2 %. The higher prediction error

occurred in the multi element system and especially in

the case of 9 metastable beta phase alloys24)(Sample No’s

49-57). By observing carefully, the reason for higher

error is due to lack of sufficient beta phase alloys data

and the available data is sparse. 

The percentage error in prediction of the samples 7, 8,

9 and 10 are 3.9, 2.6, 0.3 and 1.4 respectively. The beta

transus temperature experiments of these samples were

carried out at POSCO, Pohang, Korea to evaluate the ex-

trapolated prediction of beta phase volume.16) Determina-

tion of β transus temperature by phase disappearing
method is time consuming, expensive and difficult one.

The present model can help to identify the β transus
temperature with minimum error. At present we are

collecting more versatile data to improve the effectiveness

of the model and to make it as a generalized standard

model for estimating β transus. The graphical user
interface of the beta transus model is easy to use and the

screen shots were shown. Fig. 2(a) shows the prediction

at new instances and 2(b) shows the estimated beta transus

as a function of Al and V at 5 % chromium keeping other

elements to zero. A few Korean researchers in academia

and industry are using the present model to estimate the

β transus temperature. 
The usefulness of the developed model does not end

with the predictions of the beta transus, but it can be

used for the examination of the data and to construct

phase diagrams. For instance, it is useful to predict the

effect of a single element or two on the beta transus

temperature keeping all the remaining elements unchanged

by sensitivity analysis.15,16)

Beta transus temperature for pure titanium is around

Sjk
P

Sjk
P ∆ok

P

∆uj
P----------=

uj
P

ok
P
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Table 2. Prediction of beta transus temperature for unseen α, α+β and β titanium alloys.

S.No Al Cr Fe Mo Sn Si V Zr O 
Nature of 

alloy
A P (% E) Ref.

1 0.2 0.18 α 890 884.4 −0.6 24

2 0.3 0.25 α 915 903.4 −1.3 24

3 0.3 0.35 α 920 928.0 0.9 24

4 0.5 0.4 α 950 941.6 −0.9 24

5 5 2.5 α 1040 1018.3 −2.1 24

6 0.3 α 880 878.9 −0.1 24

7 7 0.01 1.5 0.15 α 1066 1024.0 −3.9 16

8 6.85 0.13 1.6 0.17 Near α 1044 1017.0 −2.6 16

9 6.19 0.19 4.05 0.12 α + β 989 992.3 0.3 16

10 6.33 0.19 4 0.17 α + β 998 983.8 −1.4 16

11 4.85 0.1 4.5 0.2 α + β 960 959.5 −0.1 23

12 4.76 0.4 4.3 0.1 α + β 925 946.6 2.3 23

13 6.55 0.4 4.4 0.1 α + β 1000 992.5 −0.7 23

14 6.55 0.4 4.4 0.1 α + β 975 1002.8 2.8 23

15 5.64 0.3 3.8 0.1 α + β 970 979.9 1.0 23

16 4.766 0.1 3.3 0.1 α + β 947 969.8 2.4 23

17 6.514 0.1 4.3 0.1 α + β 969 1002.4 3.4 23

18 6.495 0.1 3.3 0.2 α + β 1012 995.1 −1.7 23

19 4.79 0.4 3.4 0.2 α + β 963 955.2 −0.8 23

20 4.85 0.11 4.45 0.198 α + β 960 959.4 −0.1 23

21 4.76 0.39 4.27 0.072 α + β 925 948.2 2.5 23

22 6.55 0.407 4.38 0.197 α + β 1000 976.9 −2.3 23

23 6.55 0.394 3.38 0.071 α + β 975 1007.3 3.3 23

24 5.64 0.252 3.83 0.135 α + β 970 977.6 0.8 23

25 4.766 0.11 3.297 0.08 α + β 947 970.7 2.5 23

26 6.514 0.11 4.29 0.079 α + β 969 1004.9 3.7 23

27 6.495 0.107 3.313 0.19 α + β 1012 996.5 −1.6 23

28 4.79 0.39 3.35 0.196 α + β 963 955.9 −0.7 23

29 8 1 1 α + β 1040 1046.9 0.7 24

30 6 1 2 0.1 1.5 α + β 1015 993.9 −2.1 24

31 5.9 0.4 2.6 0.45 3.8 α + β 1010 1048.3 3.8 24

32 2.5 1 11 0.2 5 α + β 945 985.2 4.3 24

33 6 0.5 0.25 5 α + β 1020 1011.6 −0.8 24

34 5.5 0.25 3.5 0.3 3 α + β 1015 1030.8 1.6 24

35 5.8 0.5 4 0.35 3.5 α + β 1045 1033.7 −1.1 24

36 5 0.8 6 0.25 2 α + β 1005 1048.0 4.3 24

37 6 2 2 0.1 4 α + β 995 1002.8 0.8 24

38 5 2 5 0.25 2 α + β 980 1024.0 4.5 24

39 3 2.5 α + β 935 939.9 0.5 24

40 6 4 α + β 995 1006.2 1.1 24

41 6 2 6 α + β 945 977.3 3.4 24

42 4 4 2 0.5 α + β 975 1050.7 7.8 24

43 5 4 2 0.25 2 α + β 960 961.0 0.1 24

44 6 2 2 2 0.25 2 α + β 970 975.6 0.6 24

45 6 6 2 4 α + β 940 1087.2 15.7 24

46 6 2 0.1 α + β 1015 941.2 −7.3 24

47 4.5 1.5 5 α + β 935 961.9 2.9 24

48 5 4 4 2 2 α + β 890 1041.6 17.0 24

49 3 11 13 β 720 736.6 2.3 24

50 11.5 4.5 6 β 760 857.2 12.8 24

51 3 6 4 8 4 β 795 659.9 17.0 24

52 3 2 10 β 800 772.7 −3.4 24

53 3 3 3 15 β 760 699.3 −8.0 24

54 3 15 0.2 β 815 763.9 −6.3 24

55 1.5 4.5 6.8 β 810 708.0 12.6 24

56 5 2 1 4 2 4 β 890 955.3 7.3 24

57 4.5 2 2 3 β 900 891.7 −0.9 24



Practical Model for Predicting Beta Transus Temperature of Titanium Alloys 385

882 oC. In general, the amount of Al in titanium alloys is

usually limited to 7.0 %, and the available data for higher

% Al is sparse. However, to test model predictability, we

asked the model to predict the β transus temperature up
to 12 % Al addition keeping other elements as zero. As

Al increases from 0 % to 12 %, the beta transus tempera-

ture increased from 882 oC to 1125 oC shown in Fig. 3(a).

Even though, the maximum experimental data available

for limited to 9.6 %, the predictions beyond the experi-

mental data are reasonable and quite acceptable. The

model predictions with increase in vanadium from 0 to

20 % resulted the beta transus is dropped from 882 oC to

675 oC represented in Fig. 3(b). The increase in molyb-

denum from 0 to 16 % caused the decrease in beta transus

temperature to 730 oC shown in Fig. 3(c). The increase in

oxygen from 0 to 1 % raised the beta transus temperature

to 1029 oC and shown in Fig. 3(d). 

Al and O are alpha stabilizers and increase the beta

transus temperature. V and Mo are beta stabilizers and

reduce the beta transus temperature. This is well estab-

lished phenomenon and the model predictions are in

good agreement with it and error in comparison with the

experimental data is minimal. Most importantly, Guo et

al.8) used same data and predicted the binary Ti-X(X =

Al, V, Mo, O) systems and the present model outper-

formed their model predictions. As good predictions are

achieved with binary phase diagrams, we tried to explore

the sensitivity analysis further for multicomponent phase

diagram which were not reported earlier as per authors

best of knowledge.

Fig. 4. shows the estimated beta transus temperature by

varying Al and V from minimum to maximum at various

Fig. 2. Screen shots of the user interface of the model (a) prediction of beta transus temperature Ti-4.5Al-2Fe-2Mo-3V alloy(Sample no 57

in Table 2) (b). Surface plot of the beta transus as a function of Aluminum and Vanadium at 5 % Chromium. 

Fig. 3. Predicted and experimental beta transus temperature of (a) Ti-xAl alloy, (b) Ti-xV alloy, (c) Ti-xMo alloy, (d) Ti-xO alloy.
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at 1, 3, 5 and 9 % of Cr values. The other alloying

elements were kept zero. Aluminum addition increases beta

transus temperature. Vanadium and chromium decreases

the beta transus temperature. These changes and the

interactions between these elements are unknown, non-

linear, and complex. Constructing these alloys in real life

with these variations is expensive and time consuming.

The predicted self-explanatory contour plots allow the

range of conditions for the optimization of alloying

elements for the desired β transus temperature by visual
inspection. The various color bands indicate the range of

beta transus temperature as a function of Al, V and 1, 3,

5 and 9 % addition of Cr. The range of aluminum and

vanadium varies from 0 to 9.6 % and 0 to 20 %, re-

spectively. We note that every point in the Figure

specifies one multicomponent Ti-Al-V-Cr system. Increase

in chromium percentage from 1 % to 9 % decreased the

beta transus temperature ranges from 660-1090 oC to

636-883 oC. The contour shapes are becoming more

complex with the increase in chromium. This beta transus

temperature map can provide an insight into the absolute

amount of chemical composition required to identify the

process window for titanium alloys. The model can

predict and analyze beta transus temperature for any

combination of desired alloying elements. Table 1 show

the wide ranges of compositions where infinite number

of titanium alloys was feasible within the limit. Hence,

the construction of the model with large number of

reliable datasets(present 201 data sets) makes the model

suitable for entire titanium alloys family.

5. Conclusions

The predictions with unseen experimental data show

that the neural networks can model complicated and non-

linear complex relationships between beta transus tem-

perature and alloy composition. Sufficient reliable data is

necessary for an effective and efficient prediction. The

sensitivity analysis helps to construct the binary and

multicomponent titanium alloy systems and to identify

the effect of alloying elements. The predictions by the

model provide useful information from relatively small

experimental databases(201 data sets). On the shop-floor,

a great deal of time, energy and materials can be saved

to find the beta transus temperature of any unknown

titanium alloys with whatever composition(within the

range). The established relationships would be very useful

to industries for designing their experiments, and even-

tually their alloy.
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