• Title/Summary/Keyword: Allowable bending stress

Search Result 81, Processing Time 0.028 seconds

Excess Vibration Phenomena and Soundness of Drain Piping in Moisture Separator Reheat Exchanger (습분 분리 재열기 배수배관의 과도진동과 배관 건전성)

  • Kim, Yeon-Whan;Kim, Hee-Soo;Bae, Yong-Chae;Lee, Hyun;Lee, Young-Shin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.393-398
    • /
    • 2001
  • Pulsations, vibration and stress are the basic dynamic phenomena in power plant piping systems which directly affect system reliability. These phenomena are both acoustical and mechanical in nature and are closely interrelated. It was noticed that thermodynamic parameters were changed after replacing with new type tube bundles of reheat exchanger. It was reported later that the drain piping connecting the new bundle header with the associated drain tank is regularly pulsating at about every 3 second with 13.4㎐ and 7.5mm, p-p in amplitude. This amplitude is about 6 times higher than reference level of sound piping. The results of finite element analysis of the pipeline showed that its dominant natural frequency is 13.4㎐. The soundness is predicted whether the bending dynamic stress evaluated excesses the maximum allowable high cycle fatigue stress or not by the measured amplitude of vibration.

  • PDF

Possibility for the Replacement of Recycled Plastic Products on Timber Ginseng Cultivation Facilities (목재 인삼재배시설에 대한 재생플라스틱의 대체 가능성 평가)

  • Song, Hosung;Lim, Seong-Yoon;Kim, Yu-Yong;Yu, Seok-Cheol
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.4
    • /
    • pp.45-52
    • /
    • 2023
  • This study was conducted to examine the possibility of use as a structural material for ginseng cultivation facilities of recycled plastics. In order to determine the possibility that recycled plastic can replace timber used as a structural material for ginseng cultivation facilities, the specimens collected by elapsed time were compared with timber through bending tests. In addition, in order to analyze the effect of external environmental conditions on recycled plastic products, bending test was conducted with the specimens that had completed weathering test and accelerated heat aging test respectively. As a result, the bending strength of recycled plastic specimens with the elapsed time of 360 days was lower than that of timber. But bending strength of recycled plastic specimens exceeded the design allowable stress standard set by the Korea design standard (MOLIT, 2016). There was no degradation in quality of recycled plastic due to the external environment, and it was found that there would be no problem even if it was used as a structural material for ginseng cultivation facilities.

Structural Design of Polyethylene Boat Hull by using Longitudinal Bending Strength Test Method (종굽힘강도시험방법을 이용한 폴리에틸렌 보트 선체의 구조 설계)

  • Cho, Seok-Swoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8447-8454
    • /
    • 2015
  • ISO 12215-5 standard describes allowable stress design specifications of monohull small boat with a length of hull between 2.5 m and 24 m constructed from fiber reinforced plastics, aluminium or steel alloys, glued wood or other suitable boat building material. If small boat hull is under 2.5m in overall length or nonstandard material is used as boat building material, structural reliability of small boat hull is assured by drop test specification, but not by structural design specification in accordance with ISO 12215-5. Drop test specification of boat hull can be applied to manufactured product. But it is difficult and complicated to apply drop test specification to structural design of boat hull. In this study, we present structural design method of polyethylene boat hull on the basis of longitudinal bending strength test specification.

Experimental Study of Bending and Bearing Strength of Parallel Strand Lumber (PSL) from Japanese Larch Veneer Strand

  • OH, Seichang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.4
    • /
    • pp.237-245
    • /
    • 2022
  • This study examined the structural performance of experimental parallel strand lumber (PSL) from a Larch veneer strand. The prototype of PSL from a Larch veneer strand was manufactured in the experimental laboratory and tested. The bending and dowel bearing strength were determined from the modulus of elasticity (MOE), modulus of rupture (MOR), and dowel bearing strength based on a 5% offset yield load. The test results indicated that the average MOR of PSL was higher than that of 2 × 4 dimension lumber, and the average MOE of PSL was lower than that of 2 × 4 dimension lumber. A linear relationship was observed between the MOR and MOE. The allowable bending stress of PSL was derived as specified in ASTM D2915 and compared with other research. The dowel bearing strength of PSL in parallel to the grain was approximately double that perpendicular to the grain of PSL. A comparison of several theoretical calculations based on each national code for the dowel bearing strength was conducted, and some theoretical equations produced results closer to the experimental results when it was parallel to the grain, but the difference was higher in the case perpendicular to the grain. The test results showed that PSL made with Japanese larch veneer strands appeared to be suitable for a raw material of structural composite lumber (SCL) appeared to be used as a raw material for SCL.

Strength Design Evaluation of the Multi-range Transmission (다단 변속기의 강도설계 검증)

  • Kong, M.G.;Song, C.K.;Kim, Y.D.
    • Journal of Power System Engineering
    • /
    • v.15 no.3
    • /
    • pp.12-17
    • /
    • 2011
  • Gears are useful for power transmission due to excellent power transmission performance, low cost, and compactness. In addition, gears have constant speed ratio, compact structure, and excellent efficiency. In order to transmit higher power, the new multi-range transmission requires gears which have greater strength than the existing transmission. This study evaluates stability and durability through gear analysis of the multi-range transmission in commercial vehicles using ROMAX-DESIGNER program. Also, strength design evaluation is carried out by the analysis results which are compared with gear strength theory of AGMA standard. Bending stress and contact stress on gears are lower than their allowable stresses. Therefore, we can evaluate the safety of the gear strength design in multi-range transmission.

Detailed analysis of Non-Welding Composite Pile Joint (무용접 복합말뚝 연결부 상세 평가)

  • Ko, Jun-Young;Shin, Yun-Sup;Jeong, Sang-Seom;Boo, Kyo-Tag
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.441-448
    • /
    • 2009
  • In this study, the joint part of non-welding composite pile is investigated by a three dimensional finite element analysis. Special attention is given to the overall stress distribution under lateral, axial and tensional load conditions. Through comparisons with allowable stress of materials, a simple method is proposed to estimate the ultimate load condition of joint part. The appropriate design method is suggested and highlighted through the numerical analysis.

  • PDF

Structural Design for Key Dimensions of Printed Circuit Heat Exchanger (인쇄기판형열교환기 핵심치수 구조설계)

  • Kim, Yong Wan;Kang, Ji Ho;Sah, In Jin;Kim, Eung Seon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.1
    • /
    • pp.24-31
    • /
    • 2018
  • The mechanical design procedure is studied for the PCHE(printed circuit heat exchanger) with electrochemical etched flow channels. The effective heat transfer plates of PCHE are assembled by diffusion bonding to make a module. PCHE is widely used for industrial applications due to its compactness, cost efficiency, and serviceability at high pressure and/or temperature conditions. The limitations and technical barriers of PCHE are investigated for application to nuclear components. Rules for design and fabrication of PCHE are specified in ASME Section VIII but not in ASME Section III of nuclear components. Therefore, the calculation procedure of key dimensions of PCHE is defined based on ASME section VIII. The effective heat transfer region of PCHE is defined by several key dimensions such as the flow channel radius, edge width, wall thickness, and ridge width. The mechanical design procedure of key dimensions was incorporated into a program for easy use in the PCHE design. The effect of assumptions used in the key dimension calculation on stress values is numerically investigated. A comparative analysis is done by comparing finite element analysis results for the semi-circular flow channels with the formula based sizing calculation assuming rectangular cross sections.

Analytical Structural Integrity for Welding Part at Piping Penetration under Seismic Loads (지진하중이 적용되는 배관 관통부의 용접에 대한 구조 건전성 해석)

  • Choi, Heon-Oh;Jung, Hoon-Hyung;Kim, Chae-Sil
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.1
    • /
    • pp.23-29
    • /
    • 2014
  • The purpose of this paper is to assess the structural integrity of piping penetrations for nuclear power plants. A piping qualification analysis describes loads due to deadweight, pressure difference acts normal to the plate, thermal transients, and earthquakes, among other events, on piping penetrations that have been modeled as an anchor. Amodel was analyzed using a commercial finite element program. Apiping penetration analysis model was constructed with an assembly of pipe, head fittings and sleeves. Normally, the design load, thus obtained, will consist of three moments and three forces, referred to a Cartesian coordinate system. When comparing the stress analysis results from each required cutting position, the general membrane stress intensities and local membrane plus bending stress intensities during a structural evaluation cannot exceed the allowable amount of stress for the design loads. Therefore, the piping penetration design satisfies the code requirements.

Study on the Maximum Expansion Length of a Bridge with Contrete Track (콘크리트궤도 부설교량의 최대 신축장에 관한 연구)

  • Choi, Yu-Bok;Choi, Jin-Yu;Park, Yong-Gul;Joo, Hwan-Joong;Ki, In-Do
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.436-442
    • /
    • 2011
  • It is increasing construction of long span railway bridge with concrete track system for speed up of railway and efficient maintenance of track. As the sleeper of the concrete track system layed on a bridge is fixed on deck of the bridge, the displacement of the sleeper and deck is same. Therefore, the spacing between two sleeper installed at the end of the adjacent deck near the expansion joint of bridge becomes vary according to the longitudinal expansion of a deck by temperature change. By the way, if the spacing of sleepers become increase excessively, it causes large bending stress of in a rail, and it can leads failure or reduction of fatigue life of the rail. And also the excessive displacement of the rail may induce decrease ride comfort. Therefore, in order to prevent such problems, the allowable maximum sleeper spacing at a bridge expansion joint was mutually determined. And, the determination procedure of the maximum bridge expansion length based on the allowable sleeper spacing was suggested.

  • PDF

Strength Property of the Incised Larix (Larix kaempferi Carr.) Round Posts treated with CCA (인사이징 처리 낙엽송 CCA-방부원주목의 강도 성능 평가)

  • Park, Jun-Chul;Kim, Sang-Woo;Ryu, Jae-Yun;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.85-92
    • /
    • 2008
  • Strength of logs and round posts is compared and analyzed to estimate the strength of the incised Larix round posts treated with CCA in this paper. There is no significant difference in MOR of logs and round posts. However, in the incised Larix round posts treated with CCA MOE is decreased to about 9%, and there is 29% reduction in MOR as strength ratio is 0.71. When calculating the allowable bending stress of incised round type round posts, not in nominal 2-in timbers, an adjustment factor for MOE and bending strength is proposed as 0.91 and 0.71, respectively. Logs, round posts and the incised Larix round posts treated with CCA do not show significant difference in nail withdrawal load. There is almost no difference between incised Larix round posts treated with CCA and round posts in the shear strength of bolted joint. When calculating the allowable shear stress of bolted joint, it is conformed that considering the application of incising factor is not necessary.