• Title/Summary/Keyword: Allowable Value

Search Result 307, Processing Time 0.03 seconds

A Control Value Analysis on the Axial Force of Braced Excavation Walls Used In Korea (국내 적용되고 있는 흙막이구조물의 축력에 대한 관리기준치 분석)

  • Jung, Sang-Kug;Lee, Kwang-Chan;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.4
    • /
    • pp.171-180
    • /
    • 2000
  • This study aims to present a more reasonable control value than the exiting one by comparing and analyzing control values and field instrumentation values of the whole excavation depth of the four case sites using geometric averaging as a statistical method. The range of the study is confined to three things: (1) the axial force of the braced excavation walls among a variety of items prescribed in the control values by stress deformation of walls and adjacent structures; (2) by approximation of the allowable and design value; (3) and by safety factor. As a res it is desirable to revise "(Long term allowable stress + Short term allowable stress)/2 ~ Short term allowable stress," presented in the present control values by stress deformation of walls and adjacent structures, to "(Long term allowable stress + Short term allowable stress)/5 ~ (Short term allowable stress)/3." The result also shows that since there is a difference of about 3.5%, it is not necessary to revise 70, 90, and 100 percent of LEVEL I, II, and III, prescribed in the control values by the allowable and design value approximation. In addition, modifying the control value by the safety factor, now 1.07, is unnecessary, although it varies little difference from the present value.

  • PDF

A Control Value Analysis on the Horizontal Displacement of Braced Excavation Walls Used In Korea (국내 적용되고 있는 흙막이구조물의 수평변위에 대한 관리기준치 분석)

  • Jeong, Sang-Guk;Yang, Jae-Hyouk;Kim, Ju-Hyun;Kim, Jong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.4
    • /
    • pp.169-176
    • /
    • 2001
  • This study aims to present a more reasonable control value than the exiting one by comparing and analyzing control values and field instrument8tion values of the whole excavation depth of the four case sites, using geometric averaging as a statistical method. The range of the study is confined to the horizontal displacement of braced excavation walls among a variety of items, prescribed in the control values by approximately of the allowable and design values, and by safety factors. As a result, it is desirable to revise 70, 90, and 100 percent of LEVEL I, II, and III, respectively. The horizontal displacement values of the allowable and design values approximations should change to 104, 133, and 148 percent of the allowable and design values, respectively. In addition, modifying the horizontal displacement control value of the braced excavation walls is not needed. The horizontal displacement value, presented in the control value as a safety factor, is now 1.19, as it has a slight difference from the present value.

  • PDF

The Evaluation of the Allowable Bearing Capacity of Foundations using N-Value (N-Value를 이용한 기초의 지지력 산정)

  • 이강운;박택규;정해운
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.10a
    • /
    • pp.281-292
    • /
    • 2001
  • The evaluation of the allowable bearing capacity is the most important step in the design of a foundation. An accurate evaluation of the effect of all factors such as the physical properties of the soil located beneath the area, the size of the area, the depth of foundation, and the position of the water table is impracticable Therefore, the designer is compelled to estimate the allowable bearing capacity on the basis of simple semiempirical rules under cohesionless soils. This paper deals with semiemperical rules for determining allowable bearing capacity based on observed relations between the results of standard penetration test. Additional comparisions between the results of the theoretical methods and the emperical rules are performed to suggest more conservative design for the engineer.

  • PDF

A Probabilistic Structural Design Method of Composite Propulsion System (복합재 추진기관의 확률적 구조 설계 기법)

  • Hwang, Tae-Kyung;Kim, Hyung-Kun;Kim, Seong-Eun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.80-85
    • /
    • 2013
  • This paper describes a probabilistic structural design method of composite propulsion system by comparing safety factor based on average value and allowable value with structural reliability. Generally, the required structural safety factor and reliability of composite pressure vessel are 1.5 and 0.999, respectively. In the case of structural design using average strength, the safety factor which satisfies the required structural reliability depends on the variation of fiber strength. However, the structural design using allowable value shows constant safety factor for the variation of fiber strength, because the allowable value of fiber strength is calculated by considering the variation of fiber strength. Through the analysis results, it was known that the fiber strength is the most important design random variable for the structural design of composite pressure vessel and the variation of fiber strength must be minimized to develop the high performance composite propulsion system.

Review of Visual Grading and Allowable Stress Determination Methodologies for Domestic Softwood (국산 침엽수재의 육안 등급구분방법 및 허용응력설정에 관한 총설)

  • Kong, Jin Hyuk;Jeong, Gi Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.1
    • /
    • pp.25-35
    • /
    • 2015
  • The goal of this study was to review the visual grading and allowable stress determination methodologies for the domestic softwood. Previous studies used different grading (KFRI 1995-27, KFRI 2000-39, KFRI 2007-3, KFRI 2009-1) and allowable stress determination methodologies (ASTM D 245, KS F 2152, JAS 1990). The results of the visual grading were different by each researcher. Compared to the $1^{st}$ grade proportion from the previous studies using the previous specification on visual grading (KFRI 1995-2007), a higher $1^{st}$ grade proportion was found from the studies using the current specification (KFRI 2009). Compared to the allowable stress values from the small clear sample, the higher allowable stress values from the structural size were found. The results indicated that the strength reduction factor used in small clear sample was too conservative for the different grades. To obtain consistent results for the grade, it is required to have experts in visual grading and authorized organizations. An official standard methodology for the allowable stress value determination needs to be defined for the reliable stress value.

Evaluation of Allowable Bending Stress of Dimension Lumber; Confidence Levels and Size-adjustment

  • Pang, Sung-Jun;Lee, Jun-Jae;Oh, Jung-Kwon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.5
    • /
    • pp.432-439
    • /
    • 2013
  • The aim of this study was to investigate the processes for evaluating the allowable bending stress. The confidence levels and the size-adjustment in standards were reviewed with experimental data. The results show that, (1) KS F 2152 was more strict than others overseas standards due to the higher confidence level. The 5% NTL of bending strengths by a method in KS F 2152 were lower than the overseas standards and more specimens were required for evaluating the structural properties according to KS F 2152. (2) Due to the absence of size-adjustment method in domestic standards, the specified size and the exponential parameters on the size-adjustment equation were reviewed by size factors. The specified size (width: 286 mm, length: 6096 mm), and the exponential parameters (w: 0.29, l: 0.14) will be suitable for developing the allowable bending stress in domestic standard. (3) The size adjusted allowable bending stresses of No. 2 grade Korean pine were lower than the allowable stresses tabulated in KBC even though less strict method (75% confidence level) to calculate 5% value was used. The allowable stresses tabulated in KBC are needed to be reviewed by continuous experimental data.

Estimation of the Allowable Bio-shock Fragility Index of Fruits for Optimum Packaging Design (적정 포장설계를 위한 과실의 바이오 허용 충격지수 추정)

  • Kim, Ghi-Seok;Jung, Hyun-Mo;Kim, Ki-Bok;Kim, Man-Soo
    • Journal of Biosystems Engineering
    • /
    • v.32 no.6
    • /
    • pp.416-421
    • /
    • 2007
  • Physical damage to fruits and vegetables caused by shock degrades the value of product in the fresh market. In order to design a product/packaging system to protect the product, the G-factor to the product that causes shock damage needs to be determined. The shock fragility of organisms such as fruits with a concept correspondent to the G-factor of industrial products was calculated and we defined the allowable bio-shock fragility index as the value divided peak acceleration that was generated in safe drop height by standard acceleration of gravity. We did modeling for safe drop hight that would prevent fruits from damage by drop tests and tried to estimate the allowable bio-shock fragility index of pears and apples for optimum packaging design. The bio-shock fragility index of pears was in the range of $0.74{\sim}2.29\;G$, while apples had a slightly higher value than that of pears, of $0.51{\sim}2.98\;G$. This result shows accordance with the general fact that apples have a firmer structure and get less damage from the same impact. Based on this result, it is possible to create an optimum packaging design by providing a damage standard by impact.

Construction Sequence Measurement & Analysis for Continuous 8-span Prestressed Concrete(PSC) Girder Bridge (8경간 연속화 프리스트레스 거더교의 시공 계측 및 분석 -서울교 확장교량 적용)

  • 조성웅;이원표;임현태
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.985-990
    • /
    • 2001
  • The widened Seoul-Bridge is the first continuous 8-span prestressed concrete(PSC) girder bridge in domain. The construction sequence of the bridge consists of S steps in a large way. The measuring in construction stage includes the determination of the allowable fluctuation value of beam stress in each step and the measurement beam stress during prestessing. The measured tendon prestress force was compared with the design value. When it was compared with the analytic result, the difference between the measured stress and the analytic stress was below allowable error. The friction loss and the anchorage slip loss of the tendon prestress force was lower than the design loss value.

  • PDF

Conceptional Framework of Level of Protection for Facilities (시설물 방호등급 개념 설계)

  • Kee, Jung Hun;Lee, Hyun Seok;Jamot, Dongfack Guepi Clovis;Park, Jong Yil
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.3
    • /
    • pp.67-72
    • /
    • 2015
  • Although attention to terrorism has increased sharply in recent years within many countries, it is by no means a new phenomenon. Majority of these countries have limited regulations or guidelines about terrorism. LOP (Level Of Protection) can be consider as a first step. This paper seeks to present a process to determine LOP and allowable damage. LOP is determined by asset value reason why it should be based on cost. The asset value is defined as "cost induced when asset is damaged". For example, the collateral damage outside the facility should be taken in consideration in the asset value. Allowable structural damage is assigned depending on LOP.