• Title/Summary/Keyword: Allowable Settlement

Search Result 132, Processing Time 0.023 seconds

The response of a single pile to open face tunnelling (Open face 터널시공으로 인한 단독말뚝의 거동)

  • Lee, Cheol-Ju
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.5
    • /
    • pp.529-545
    • /
    • 2012
  • Three-dimensional (3D) finite element analyses have been performed to study the behaviour of a single pile to open face tunnelling in stiff clay. Several key factors such as tunnelling-induced ground and pile settlement, and shear transfer mechanism have been studied in detail. Tunnelling resulted in the development of pile settlement larger than the Greenfield soil surface settlement. In addition, due to changes in the shear transfer between the pile and the soil next to the pile with tunnel advancement, axial force distributions along the pile change drastically. The apparent allowable pile capacity was reduced up to about 30% due to the development of tunnelling-induced pile head settlement. The skin friction on the pile was increased with tunnel advancement associated with the changes of soil stresses and ground deformation and hence axial pile force distribution was reduced. Maximum tunnelling-induced tensile force on the pile was about 21% of the designed pile capacity. The zone of influence on the pile behaviour in the longitudinal direction may be identified as ${\pm}1$-2D (D: tunnel diameter) from the pile centre (behind and ahead of the pile axis in the longitudinal direction) based on the analysis conditions assumed in the current study. Negative excess pore pressure was mobilised near the pile tip, while positive excess pore pressure was computed at the upper part of the pile. It has been found that the serviceability of a pile experiencing adjacent tunnelling is more affected by pile settlement than axial pile force changes.

Analysis of Stresses on Buried Natural Gas Pipeline Subjected to Ground Subsidence (매설 천연가스배관의 지반침하에 의한 응력 분석)

  • 김형식;김우식;방인완;오규환;홍성호
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.2
    • /
    • pp.54-64
    • /
    • 1998
  • This study was initiated to examine the stress and deformation characteristics of the pipelines which were subjected to various environmental conditions in order to confirm their integrity. As the part of them, this paper presents the analysis results for the effect of ground subsidence combined with main loads on buried natural gas pipelines. The ground subsidence which can occur for buried gas pipeline has been classified to the three cases. Finite element method was used to analyze the effect of ground subsidences on pipeline of 26 inch(0.660 m) and 30 inch(0.762 m) diameter used as high pressure ($70 kg_f/cm^2(6.86 MPa)$) main pipelines of KOGAS. This paper shows the result of stress analysis for the pipelines subjected to those three case ground subsidence. Comparing these results with safety criterion of KOGAS(0.9 $\sigma_y$), maximum allowable settlement and loads have been calculated.

  • PDF

The Very Large Sectioned 3-Arch Tunnel Design under the Station Building and Railways (철도역사 및 선로 하부를 통과하는 대단면 3-Arch 터널의 설계)

  • Chang Seok-Bue;Moon Sang-Jo;Kwon Seung;Kim Jun-Goo;Kwon Gie-Dae
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1136-1141
    • /
    • 2004
  • This paper presents the design case of the 3-arch tunnel under existing railways and railway station building. The original construction method was the underpinning method supported by pipe-roof, but it was changed to the minded tunnelling method because of the complex construction condition and the safety problem. This 3-arch tunnel has a width of 28 meters and a height of 10 meters. Overburden is only 23m and the ground consists of the weathered soil and rock. Because the allowable settlements for the station building and railways are limited strictly, various measurements for the tunnel stability and the settlement minimization was considered.

  • PDF

The Numerical analysis of Top-Base Foundation in Siwha Marine Clay (시화 해성점토 지반에서의 팽이기초의 수치해석연구)

  • Kim, Hyun-Soo;Kim, Hak-Moon;Kim, Chan-Kook
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1155-1165
    • /
    • 2008
  • Full scale size model tests of the top-base foundation was performed in siwha marine clay and the site measurement results were compared with the analytical results from finite different programs, FLAC-2D to investigate the behavior of top-base foundation. The stress distribution obtained from the numerical analysis for the various types of foundation were compared and analysed during the application of allowable load as well as yield load. It was found that the top-base foundation prevents the lateral deformation of soft ground and stress dispersion effect to reduce the surface settlement, and that the foundation creates uniform stress distribution around it, therefore increasing bearing capacity.

  • PDF

Finite Element Analysis of the Load-Displacement Curves of Concrete Piles (콘크리트 말뚝의 하중-변위 곡선에 대한 유한요소해석(지반공학))

  • 정진섭;이대재;이광범
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.438-443
    • /
    • 2000
  • A wide range of problems geotechnical engineering have been analyzed by using the finite element method. In order to establish confidence in a numerical procedure, it is desirable that numerical solution be verified against field or laboratory observations, or both, and in order to aid the user in applying the method to practical problems, it is necessary to examine effects of various parameters that influence the behavior of engineering structures. Often it can be profitable to translate numerical solutions in formats that can be used readily for design analysis. The allowable bearing capacity of concrete piles is mainly governed by settlement rather than by strength of soil. Therefore, the load-displacement behavior of piles should be well understood at the design stage. This paper deals with some of these goals by considering the problem of load-displacement behavior of axially-loaded pile foundations.

  • PDF

An Experimental Study on Bearing Capacity of Drilled Shaft with Mid-size (중구경 현장타설말뚝의 지지력 특성에 관한 실험적 연구)

  • Lee, Kwang-Wu;You, Seung-Kyong;Park, Jeong-Jun;Yun, Jung-Mann;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.263-272
    • /
    • 2019
  • This paper describes the results of bearing capacity using field loading test of pile, in order to extend the applicability of drilled shaft with mid-size, and the results were compared with the prediction results of design bearing capacity by empirical formular. The static load test result showed that the allowable bearing capacity of high pile strength was about 2.4 times higher than that of low pile strength. The dynamic load test result showed that the allowable bearing capacity of high pile strength was about 1.4 times~1.5 times higher than that of low pile strength. The comparison result of allowable bearing capacity between static and dynamic load test showed that the difference of allowable load ranged from 3% to 6% under the same settlement conditions. As a result of comparing the ultimate bearing capacity by load test and design bearing capacity, it was found that the FHWA proposed equation could be more reasonable than the other proposed equation in load sharing ratios of end bearing and skin friction.

Study(VII) on Development of Charts and Equations Predicting Bearing Capacity for Prebored PHC Piles Socketed into Weathered Rock through Sandy Soil Layers - Allowable Axial Compressive Bearing Capacity Formulae - (사질토를 지나 풍화암에 소켓된 매입 PHC말뚝에서 지반의 허용압축지지력 산정도표 및 산정공식 개발에 관한 연구(VII) - 지반의 허용압축지지력 산정공식 -)

  • Kwon, Oh-Kyun;Nam, Moon S.;Lee, Wonje;Yea, Geu Guwen;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.12
    • /
    • pp.69-89
    • /
    • 2019
  • Design chart solution and table solution were proposed by Choi et al. (2019a), which conducted a parametric numerical study for the bored PHC piles socketed into weathered rocks through sandy soil layers. Based on the Choi et al. (2019a), the new prediction formulae for mobilized capacity components such as total capacity, total skin friction and skin friction of sand at the settlement of 5% pile diameter were proposed in this study. The proposed prediction formulae (EQ-G1) considers pile diameter, relative embedment length and ${\bar{N}}$ (i.e, corrected N) value and their verification results are as follows. The SRF calculated from the new proposed design method was 71~94%, which are greatly improved compared with results by the existing design method. The design efficiency of bearing capacity was in the range of reasonable design except 4 cases, and the design efficiency of the PHC pile was evaluated as 85%. Therefore, it is possible that allowable compressive load (Pall) of PHC pile can be utilized in the resonable design by means of the new proposed method using EQ-G1 equations. And the other new proposed equations of EQ-G2-3 can be utilized approximately in calculation of axial compressive bearing capacity components for prebored PHC pile.

Analysis of the Behavior Characteristics of Pile Foundations Responding to Ground Deformation (지반 변형 대응형 말뚝 기초의 거동 특성 분석)

  • Lee, Junwon;Shin, Sehee;Lee, Haklin;Kim, Dongwook;Lee, Kicheol
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.4
    • /
    • pp.21-32
    • /
    • 2020
  • As the global large-scale infrastructure construction market expands, the construction of civil engineering structures in extreme environments such as cold or hot regions is being planned or constructed. Accordingly, the construction of the pile foundation is essential to secure the bearing capacity of the upper structure, but there is a concern about loss of stability and function of the pile foundation due to the possibility of ground deformation in extreme cold and hot regions. Therefore, in this study, a new type of pile foundation is developed to respond with the deformation of the ground, and the ground deformation that can occur in extreme cold and hot region is largely divided into heaving and settlement. The new type of pile foundation is a form in which a cylinder capable of shrinkage and expansion is inserted inside the steel pipe pile, and the effect of the cylinder during the heaving and settlement process was analyzed numerically. As a result of the numerical analysis, the ground heaving caused excessive tensile stress of the pile, and the expansion condition of the cylinder shared the tensile stress acting on the pile and reduced the axial stress acting on the pile. Ground settlement increased the compressive stress of the pile due to the occurrence of negative skin friction. The cylinder must be positioned below the neutral point and behave in shrinkage for optimum efficiency. However, the amount and location of shrinkage and expansion of cylinder must comply with the allowable displacement range of the upper structure. It is judged that the design needs to be considered.

Field Application and Performance Measurements of Precast Concrete Blocks Developed for Paving Roadways Capable of Solar Power Generation (태양광 도로용 프리캐스트 콘크리트 블록 포장의 현장 적용과 계측)

  • Kim, Bong-Kyun;Lee, Byung-Jae;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.69-76
    • /
    • 2020
  • Global warming is a very important problem as it causes rapid climate change and natural disasters. Therefore, researches related to renewable energy are being actively conducted while promoting policies such as reducing carbon dioxide emission and increasing the proportion of renewable energy. Solar power generation is being applied in urban areas like BIPV as well as existing idle areas outside the city. Therefore, in this study, precast concrete blocks developed for paving roadways capable of solar power generation were designed and constructed. For the evaluation of field applicability for 6 months, skid resistance and block settlement were measured. As a result of the experiment, it was found that skid resistance satisfies the standard of general roadway in Korea, but not the standard of highway. The skid resistance tended to decrease as time passed. In addition, the settlement of the block gradually increased slightly, but it is much smaller than the allowable settlement of the roadway. Therefore, it is necessary to establish a maintenance period and method based on the periodic measurement results in the future.

A Study on Behavior Analysis of Large-diameter Drilled Shaft by Design Methods in Deep Water Depth Composite Foundation (대수심 대형 복합기초에서 설계기법에 따른 대구경 현장타설말뚝의 거동 분석 연구)

  • Han, Yushik;Choi, Yongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.1
    • /
    • pp.5-16
    • /
    • 2015
  • In the long span bridge construction, construction cost portion of large scale marine foundation is about 40% (KICTEP, 2007). In this study, designs for deep water depth large composite foundation of a super long span cable-stayed girder bridge of prototype were performed by three design methods (ASD, LRFD, Eurocode) and the behaviors of a large diameter drilled shaft were analyzed and the 3D numerical analysis was performed. As a result, the soft rock socket lengths in allowable stress design estimation method were the longest. The soft rock socket lengths estimated by the design approach 2 among Eurocode and the LRFD were similar. The longer the socket length socketed in the soft rock was, the smaller the axial force acting on a large-diameter drilled shaft head was and the smaller the settlement of drilled shaft was.