• Title/Summary/Keyword: Alkene

Search Result 54, Processing Time 0.028 seconds

Studies on Polyphosphazenes-bound Wittig Reactions (포스파젠 고분자를 이용한 Wittig반응에 관한 연구)

  • Kwon, Suk-Ky;Jun, Chang-Lim
    • Applied Chemistry for Engineering
    • /
    • v.5 no.5
    • /
    • pp.843-850
    • /
    • 1994
  • Polyphosphazene-bound Wittig reagents such as $[NP(OC_6H_5)_{1.7}(OC_6H_4P(Ph)_2$=$CHCH_2CH_2CH_3)_{0.3}]_n$ were synthesized by treating $[NP(OC_6H_5)_{1.7}(OC_6H_4Br)_{0.3}]_n$ with n-butyllithium, diphenylchlorophosphine, and n-butyl iodide. Polymeric reactions were carried out according to the reaction conditions with cyclic primers such as [$N_3P_3(OC_6H_5)_5(OC_6H_4P(Ph)_2$)]. The desired alkene and polymer-bound phosphine oxide were prepared successfully by the reaction of polyphosphazene-bound Wittig reagents with benzophenone.

  • PDF

A New HPLC-analytical Method for Total Sphingosine Contents as an Indirect Index for the Ganglioside Contents of Deer Antlers

  • Choi, Hye-Ok;Kim, Jeung-Won;Jo, Sung-Jun;Kim, Jung-Hwan;Han, Byung-Hoon
    • Natural Product Sciences
    • /
    • v.17 no.4
    • /
    • pp.315-320
    • /
    • 2011
  • Routinely applicable HPLC assay procedures for the ganglioside content in various deer antler preparations were established through the creation of a UV-absorbing chromophoric substance - trans-${\alpha},{\beta}$-unsaturated-hexadecene-aldehyde - from the sphingosine moiety in ganglioside molecules by two step chemical reactions. In order to guarantee the assay's accuracy and sensitivity, the HPLC-assay procedure adopted internal reference procedures by mixing cis-${\alpha},{\beta}$-unsaturated-hexadecene aldehyde[V] or cis-3-heptadecene- 1,2-diol[IV] to assay samples. The internal reference compound [IV] or [V] was synthesized in our laboratory starting from mannitol-diacetonide through three or four step organic reactions. This new HPLC-assay procedure was successfully applied to deer antler extracts with good dose-dependent calibration curves at the picomole level of gangliosides.

Pretargeting : A concept refraining traditional flaws in tumor targeting

  • Bhise, Abhinav;Yoo, Jeongsoo
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.6 no.1
    • /
    • pp.53-58
    • /
    • 2020
  • Pretargeting is a two-component strategy often used for tumor targeting to enhance the tumor-to-background ratio in cancer diagnosis as well as therapy. In the multistep strategy, the highly specific unlabeled monoclonal antibodies (mAbs) with the reactive site is allowed to get localized at tumor site first, and then small and fastclearing radiolabeled chelator with counter reactive site is administered which covalently attaches to mAbs via inverse electron demand Diels-Alder reaction (IEDDA). The catalyst-free IEDDA cycloaddition reaction between 1,2,4,5-tetrazines and strained alkene dienophiles aid with properties like selective bioconjugation, swift and high yielding bioorthogonal reactions are emergent in the development of radiopharmaceutical. Due to its fast pharmacokinetics, the in vivo formed radioimmunoconjugates can be imaged at earlier time points by short-lived radionuclides like 18F and 68Ga; it can also reduce radiation damage to the normal cells. Ultimately, this review elucidates the updated status of pretargeting based on antibodies and IEDDA for tumor diagnosis (PET and SPECT) and therapy.

Alternative Production of Avermectin Components in Streptomyces avermitilis by Gene Replacement

  • Yong Joon-Hyoung;Byeon Woo-Hyeon
    • Journal of Microbiology
    • /
    • v.43 no.3
    • /
    • pp.277-284
    • /
    • 2005
  • The avermectins are composed of eight compounds, which exhibit structural differences at three positions. A family of four closely-related major components, A1a, A2a, B1a and B2a, has been identified. Of these components, B1a exhibits the most potent antihelminthic activity. The coexistence of the '1' components and '2' components has been accounted for by the defective dehydratase of aveAI module 2, which appears to be responsible for C22-23 dehydration. Therefore, we have attempted to replace the dehydratase of aveAI module 2 with the functional dehydratase from the erythromycin eryAII module 4, via homologous recombination. Erythromycin polyketide synthetase should contain the sole dehydratase domain, thus generating a saturated chain at the C6-7 of erythromycin. We constructed replacement plasmids with PCR products, by using primers which had been derived from the sequences of avermectin aveAI and the erythromycin eryAII biosynthetic gene cluster. If the original dehydratase of Streptomyces avermitilis were exchanged with the corresponding erythromycin gene located on the replacement plasmid, it would be expected to result in the formation of precursors which contain alkene at C22-23, formed by the dehydratase of erythromycin module 4, and further processed by avermectin polyketide synthase. Consequently, the resulting recombinant strain JW3105, which harbors the dehydratase gene derived from erythromycin, was shown to produce only C22,23-unsaturated avermectin compounds. Our research indicates that the desired compound may be produced via polyketide gene replacement.

Electronic structure and catalytic reactivity of model oxide catalysts

  • Kim, Yu-Gwon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.35-35
    • /
    • 2010
  • Understanding the mechanistic details of heterogeneous catalytic reactions will provide a way to tune the selectivity between various competing reaction channels. In this regard, catalytic decomposition of alcohols over the rutile $TiO_2$(110) surface as a model oxide catalyst has been studied to understand the reaction mechanism employing the temperature-programmed desorption (TPD) technique. The $TiO_2$(110) model catalyst is found to be active toward alcohol dehydration. We find that the active sites are bridge-bonded oxygen vacancies where RO-H heterolytically dissociates and binds to the vacancy to produce alkoxy (RO-) and hydroxyl (HO-). Two protons adsorbed onto the bridge-bonded oxygen atoms (-OH) readily react with each other to form a water molecule at ~500 K and desorb from the surface. The alkoxy (RO-) undergoes decomposition at higher temperatures into the corresponding alkene. Here, the overall desorption kinetics is limited by a first-order decomposition of intermediate alkoxy (RO-) species bound to the vacancy. We show that detailed analysis on the yield and the desorption temperatures as a function of the alkyl substituents provides valuable insights into the reaction mechanism. After the catalytic role of the oxygen vacancies has been established, we employed x-ray photoelectron spectroscopy to further study the surface electronic structure related to the catalytically active defective sites. The defect-related state in valence band has been related to the chemically reduced $Ti^{3+}$ defects near the surface region and are found to be closely related to the catalytic activity of the $TiO_2$(110) surface.

  • PDF

Characterization of Rajath Bhasma and Evaluation of Its Toxicity in Zebrafish Embryos and Its Antimicrobial Activity

  • Kalimuthu, Kalishwaralal;Kim, Ji Min;Subburaman, Chandramohan;Kwon, Woo Young;Hwang, Sung Hyun;Jeong, Sehan;Jo, Min Geun;Kim, Hyung Joo;Park, Ki Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.6
    • /
    • pp.920-925
    • /
    • 2020
  • In India, nanotechnology has been used in therapeutic applications for several millennia. One example of a traditional nanomedicine is Rajath Bhasma (also called calcined silver ash), which is used as an antimicrobial and for the treatment of various ailments and conditions such as memory loss, eye diseases, and dehydration. In this study, we aimed to characterize the physical composition and morphology of Rajath Bhasma and its suitability for use as a non-toxic antimicrobial agent. First, Rajath Bhasma was physically characterized via i) Fourier-transform infrared spectroscopy to analyze the surface functional groups, ii) scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy to observe the morphology and elemental composition, and iii) X-ray diffraction to determine the crystalline phases. Thereafter, functional characterization was performed through toxicity screening using zebrafish embryos and through antimicrobial activity assessment against gram-positive (Staphylococcus epidermidis) and gram-negative (Escherichia coli) bacteria. Rajath Bhasma was found to harbor alkene, hydroxyl, aldehyde, and amide functional groups originating from biological components on its surface. The main component of Rajath Bhasma is silver, with particle size of 170-210 nm, and existing in the form of spherical aggregates with pure crystalline silver structures. Furthermore, Rajath Bhasma did not exert toxic effects on zebrafish embryos at concentrations below 5 ㎍/ml and exhibited effective antimicrobial activity against both gram-positive and gram-negative bacteria. The present results indicate that Rajath Bhasma is a potentially effective antimicrobial agent without toxicity when used at concentrations below 5 ㎍/ml.

Solid Medium pH-Dependent Antifungal Activity of Streptomyces sp. Producing an Immunosuppressant, Tautomycetin (면역억제제 Tautomycetin을 생산하는 방선균의 고체배지 pH에 따른 항진균 활성)

  • Hur, Yoon-Ah;Choi, Si-Sun;Chang, Yong-Keun;Hong, Soon-Kwang;Kim, Eung-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.1
    • /
    • pp.26-29
    • /
    • 2007
  • Tautomycetin (TMC), which is produced by Streptomyces sp. CK4412, is a novel activated T cell-specific immunosuppressive compound with an ester bond linkage between a terminal cyclic anhydride moiety and a linear polyketide chain bearing an unusual terminal alkene. Antifungal activity against Aspergillus niger and TMC productivity assayed by HPLC using culture extracts from Streptomyces sp. CK4412 grown on solid medium adjusted at various pH were measured. The cells cultured at acidic pH (pH 4-5) medium exhibited much stronger antifungal activity as well as higher TMC productivity than those cultured at neutral pH medium, implying that the acidic pH-shock should be an efficient strategy to induce the productivity of secondary metabolites in Streptomyces culture.

Tertiary Structure of Ginsenoside Re Studied by NMR Spectroscopy

  • Kang, Dong-Il;Jung, Ki-Woong;Kim, Seoung-Keum;Lee, Sung-Ah;Jhon, Gil-Ja;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2209-2213
    • /
    • 2007
  • Ginseng has long been used as a traditional medicine in Asian countries including Korea and China. In recent years, it has been reported that the biological activities of ginseng are due to its active components, ginsenosides. Ginsenosides are represented by triterpenes of the dammarane type. Ginsenoside Re consists of two glucose rings, one rhamnose ring, and the triterpene ring. In the present study ginsenoside Re has been isolated from the Korean ginseng (Panax ginseng) and the tertiary structure has been determined using NMR spectroscopy. Flexibilities around each linkages described by seven torsion angles were considered. The structures of ginsenoside Re obtained by NMR spectroscopy show the rigidity around the glucopyranosyl ring II and alkene side chain. The dihedral angles of φ5, φ6, φ7 are about 150o, 50o and 45o, respectively. In addition, flexibility exists around rhamnopyranosyl and glucopyronosyl moiety. The linkage around the rhamnopyranosyl and glucopyranosyl ring I, are divided into three groups. This flexibility seems to play important role in regulation of the hydrophobic surface exposed to the solvent. Because of the growing need for the structural determination of ginsenoside, this result can help to understand their well-accepted pharmacological effects of ginsenoside Re.

Relative Contribution of the Oxidation of VOCs to the Concentrations of Hydroxyl (OH) and Peroxy Radicals in the Air of Seoul Metropolitan Area (서울에서의 VOCs의 히드록실 및 페록시 라디칼 농도에 대한 상대적 기여도 연구)

  • Shon, Zang-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.6
    • /
    • pp.779-790
    • /
    • 2006
  • This study examines relative contributions of volatile organic compounds (VOCs) to the formation of hydroxyl (OH) and peroxy radicals such as $HO_2$ and $RO_2$ during the intensive sampling period (Jun. $1{\sim}30$, 2004) in the air of Seoul metropolitan area. As to the contribution of VOCs to $HO_x$ levels, the impact of individual VOC concentration change on $HO_2$ concentration change was more than an order of magnitude higher than that on OH concentration change during the study period. The contribution of change in isoprene concentration to $HO_2$ concentration change was 38 times higher than OH and that in the concentration of alkene compounds to $HO_2$ concentration change was 31 times higher than OH. Moreover, the concentration changes of isoprene and aromatic compounds (AROM) played significant roles in $HO_x$ concentration changes. On the other hands, aldehydes (ALD2) and alkanes (ALKA) showed anti-correlation (negative) in $HO_x$ concentration changes with low contribution ($-4{\times}10^{-3}$ pptv/ppbv (OH) and $-58{\times}10^{-3}$ ($HO_2$) for ALD2; $-1{\times}10^{-3}$ (OH) and $-15{\times}10^{-3}$ ($HO_2$) for ALKA). Unlike other VOCs, $C_2H_6$ and $C_3H_8$ showed positive or negative contribution to peroxy radicals, depending on ambient air conditions. The contribution of VOC concentration changes to changes in $CH_3O_2$ and $RO_2$ concentration showed similar pattern to $HO_x$ contribution.

Analysis of changes in composition of amber with ageing using pyrolysis/GC/MS (열분해/GC/MS를 이용한 열화 호박(amber)의 성분 변화 분석)

  • Park, Jongseo
    • Analytical Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.190-198
    • /
    • 2013
  • Ambers have been used mostly as beads, jewelry and ornaments from ancient times and excavated as a buried artifact. When excavated, they are severely weathered to be cracked, exfoliated and disintegrated. Monitoring of changes in composition of amber according to weathering is very important for diagnosing the condition of amber and applying conservation materials and techniques. In this study, we tried to find the components of amber by analyzing amber with pyrolysis/GC/MS. The changes in the composition of pyrolzates after artificial ageing for 60 days under heat and oxygen were also observed. Abietic acid was detected as a main component of fresh amber and monoterpene, alkene, aromatic hydrocarbon were detected as major pyrolyzates. Changes with artificial ageing was estimated by comparing the peak area ratio of 23 components, and it was found that abietic acid abruptly decreased in the presence of heat and oxygen together, revealing that oxygen is a key factor to the deterioration of amber. It was also tried to understand the weathered surface of original amber gemstone based on the result of this ageing experiment.