DOI QR코드

DOI QR Code

Pretargeting : A concept refraining traditional flaws in tumor targeting

  • Bhise, Abhinav (Department of Molecular Medicine, School of Medicine, Kyungpook National University) ;
  • Yoo, Jeongsoo (Department of Molecular Medicine, School of Medicine, Kyungpook National University)
  • Received : 2020.06.15
  • Accepted : 2020.06.27
  • Published : 2020.06.30

Abstract

Pretargeting is a two-component strategy often used for tumor targeting to enhance the tumor-to-background ratio in cancer diagnosis as well as therapy. In the multistep strategy, the highly specific unlabeled monoclonal antibodies (mAbs) with the reactive site is allowed to get localized at tumor site first, and then small and fastclearing radiolabeled chelator with counter reactive site is administered which covalently attaches to mAbs via inverse electron demand Diels-Alder reaction (IEDDA). The catalyst-free IEDDA cycloaddition reaction between 1,2,4,5-tetrazines and strained alkene dienophiles aid with properties like selective bioconjugation, swift and high yielding bioorthogonal reactions are emergent in the development of radiopharmaceutical. Due to its fast pharmacokinetics, the in vivo formed radioimmunoconjugates can be imaged at earlier time points by short-lived radionuclides like 18F and 68Ga; it can also reduce radiation damage to the normal cells. Ultimately, this review elucidates the updated status of pretargeting based on antibodies and IEDDA for tumor diagnosis (PET and SPECT) and therapy.

Keywords

References

  1. SharkeyMR, BurtonJ, GoldenbergMD. Radioimmunotherapy of non-Hodgkin's lymphoma: a critical appraisal. Expert Rev Clin Immunol 2005;1(1):47-62. https://doi.org/10.1586/1744666X.1.1.47
  2. Sharkey MR, Goldenberg MD. Perspectives on cancer therapy with radiolabeled monoclonal antibodies. J Nucl Med 2005;46:115S-127S.
  3. Sharkey MR, Goldenberg MD. Cancer radioimmunotherapy. Immunotherapy 2011;3(3):349-370. https://doi.org/10.2217/imt.10.114
  4. Barbet J, Bardies M, Bourgeois M, Chatal JF, Cherel M, Davodeau F, Faivre-Chauvet A, Gestin JF, Kraeber-Bodere F. Radiolabeled antibodies for cancer imaging and therapy. Methods in Molecular Biology. Patrick Chames (ed.), 2nd ed. Antibody Engineering: Methods and Protocols; 2012. p. 681-697.
  5. Sharkey MR, Chang CH, Rossi EA, McBride WJ, Goldenberg MD. Pretargeting: taking an alternate route for localizing radionuclides. Tumour Biol 2012;33:591-600. https://doi.org/10.1007/s13277-012-0367-6
  6. Reardan TD, Meares FC, Goodwin AD, McTigue M, David SG, Stone RM, Leung PJ, Bartholomew MR, James MF. Antibodies against metal chelates. Nature 1985;316:265-268. https://doi.org/10.1038/316265a0
  7. Goodwin AD, Meares FC, McCall JM, McTigue M, Chaovapong W. Pre-Targeted immunoscintigraphy of murine tumors with Indium-111-labeled bifunctional haptens. J Nucl Med 1988;29:226-234.
  8. Steen LEJ, Edem EP, Norregaard K, Jorgensen TJ, Shalgunov V, Kjaer A, Herth MM. Pretargeting in nuclear imaging and radionuclide therapy: Improving efficacy of theranostics and nanomedicines. Biomaterials 2018;179:209-245. https://doi.org/10.1016/j.biomaterials.2018.06.021
  9. Kolb CH, Finn GM, Sharpless BK. Click chemistry: Diverse chemical function from a few good reactions. Angew Chem Int Ed 2001;40:2004-2021. https://doi.org/10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5
  10. Sletten ME, Bertozzi RC. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew Chem Int Ed 2009;48(38):6974-6998. https://doi.org/10.1002/anie.200900942
  11. Rondon A, Degoul F. Antibody pretargeting based on bioorthogonal click chemistry for cancer imaging and targeted radionuclide therapy. Bioconjugate Chem 2020:31(2):159-173. https://doi.org/10.1021/acs.bioconjchem.9b00761
  12. Blackman LM, Maksim R, Fox MJ. Tetrazine ligation: Fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. J Am Chem Soc 2008;130:13518-13519. https://doi.org/10.1021/ja8053805
  13. Van den Bosch MS, Rossin R, Verkerk RP, ten Hoeve W, Janssen MH, Lub J, Robillard SM. Evaluation of strained alkynes for Cu-free click reaction in live mice. Nucl Med and Bio 2013;40:415-423. https://doi.org/10.1016/j.nucmedbio.2012.12.006
  14. Primus JP, Wang HR, Goldenberg MD, Hansen JH. Localization of human GW-39 tumors in hamsters by radiolabeled heterospecific antibody to carcinoembryonic antigen. Cancer research 1973;33:2977-2982.
  15. Boerman CO, Kranenborg HM, Oosterwijk E, Griffiths LG, McBride JW, Oyen JW, de Weijert M, Oosterwijk-Wakka J, Hansen JH, Corstens HF. Pretargeting of renal cell carcinoma: Improved tumor targeting with a bivalent chelate. Cancer Research 1999;59:4400-4405.
  16. Rossin R, Verkerk RP, Van den Bosch MS, Vulders CR, Verel I, Lub J, Robillard SM. In vivo chemistry for pretargeted tumor imaging in live mice. Angew Chem Int Ed 2010;49:3375-3378. https://doi.org/10.1002/anie.200906294
  17. Meyer JP, Houghton LJ, Kozlowski P, Abdel-Atti D, Reiner T, Pillarsetty NVK, Scholz WW, Zeglis MB, Lewis SJ. 18F-Based pretargeted PET imaging based on bioorthogonal Diels-Alder click chemistry. Bioconjugate Chem 2016;27:298-301. https://doi.org/10.1021/acs.bioconjchem.5b00504
  18. Houghton LJ, Membreno R, Abdel-Atti D, Cunanan MK, Carlin S, W. Scholz, Zanzonico BP, Lewis SJ, Zeglis MB. Establishment of the in vivo efficacy of pretargeted radioimmunotherapy utilizing inverse electron demand Diels-Alder click chemistry. Mol Cancer Ther 2017;16(1):124-133. https://doi.org/10.1158/1535-7163.MCT-16-0503
  19. Summer D, Mayr S, Petrik M, Rangger C, Schoeler K, Vieider L, Matuszczak B, Decristoforo D. Pretargeted imaging with Gallium-68-Improving the binding capability by increasing the number of tetrazine motifs. Pharmaceuticals 2018;11:102. https://doi.org/10.3390/ph11040102
  20. Ruivo E, Elvas F, Adhikari K, Vangestel C, Van Haesendonck G, Lemiere F, Staelens S, Stroobants S, Van der Veken P, Wyffels L, and Augustyns K. Preclinical Evaluation of a Novel 18F-labeled dTCO-Amide derivative for bioorthogonal pretargeted positron emission tomography imaging. ACS Omega 2020;5:4449-4456. https://doi.org/10.1021/acsomega.9b03584