• Title/Summary/Keyword: Alkali activated slag concrete

Search Result 78, Processing Time 0.01 seconds

Strength of Alkali-Activated GGBF Slag Mortar (활성제를 사용한 슬래그 미분말 혼합 모르타르의 강도)

  • 문한영;신화철;권태석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.481-486
    • /
    • 2001
  • Ground granulated blast-furnace slag shows very high strength when proper alkali-activator exists. This paper deals with setting time, heat evolution rate and the strength development of alkali-activated slag cement activated by KOH, Ca(OH$)_{2}$, $Na_{2}$ $So_{4}$ , and alum(potassium aluminum sulfate). Alkali-activated slag mortar is studied by comparison with GGBF slag cement mortar. The experimental results indicate that for moisture curing at $25^{\circ}C$, the addiction of either 4% $Na_{2}$ $So_{4}$ or 4% alum increases the strength of GGBF slag cement mortar consisting of 50% GGBF slag and 50% portland cement at early age. Strength of activated GGBF slag cement mortars at 1, 3 and 7 days exceeded that of GGBF slag cement mortar. A conduction calorimeter was used to monitor early age hydration.

  • PDF

Durability of Alkali-Activated Blast Furnace Slag Concrete: Chloride Ions Diffusion (알칼리 활성 슬래그 콘크리트의 내구성: 콘크리트의 염소이온 확산)

  • Nam, Hong Ki;Kyu, Park Jae;San, Jung Kyu;Hun, Han Sang;Hyun, Kim Jae
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.4
    • /
    • pp.120-127
    • /
    • 2015
  • The aim of the present study is to investigate some characteristics of concrete according to addition of blast furnace slag and alkali-activator dosages. Blast furnace slag was used at 30%, 50% replacement by weight of cement, and liquid sulfur having NaOH additives was chosen as the alkaline activator. In order to evaluate characteristics of blast furnace slag concrete with sulfur alkali activators, compressive strength test, total porosity, chloride ions diffusion coefficient test were performed. The early-compressive strength characteristics of blast furnace slag concrete using a sulufr-alkali activators was compared with those of reference concrete and added 30, 50% blast furnace slag concrete. Also, Blast furnace slag concrete using sulfur-alkali activators enhanced the total porosity, chloride ions diffusion coefficient than two standard concrete. Alkali-activated blast furnace slag concrete was related to total porosity, compressive strength and chloride ions diffusion coefficient each others. As a result, it should be noted that the sulfur-alkali activators can not only solve the demerit of blast furnace slag concrete but also offer the chloride resistance of blast furnace slag concrete using sulfur alkali activators to normal concrete.

Evaluation of Flexural Performance of Eco-Friendly Alkali-Activated Slag Fiber Reinforced Concrete Beams Using Sodium Activator (나트륨계 알칼리 활성화제를 사용한 친환경 알카리활성 슬래그 섬유보강콘크리트 보의 휨성능 평가)

  • Ha, Gee-Joo;Yi, Dong-Ryul;Ha, Jae-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.170-178
    • /
    • 2015
  • In this study, it was developed eco-friendly alkali-activated slag fiber reinforced concrete using ground granulated blast furnace slag, alkali activator (water glass, sodium hydroxides), and steel fiber. Eight reinforced concrete beam using alkali-activated slag concrete were constructed and tested under monotonic loading. The major variables were mixture ratio of alkali activator, mixed/without of steel fiber. Experimental programs were carried out to improve and evaluate the flexural performance of such test specimens, such as the load-displacement, the failure mode, the maximum load carrying capacity, and ductility capacity. All the specimens were modeled in scale-down size. The reinforced concrete beams using the eco-friendly alkali-activated slag fiber reinforced concrete was failed by the flexure or flexure-shear in general. In addition, the maximum strength increased with the adding the mol of sodium hydroxide, and the specimen reinforced the steel fiber showed the value of maximum strength which is increased by 15.8% through 25.9%. It is thought that eco-friendly alkali-activated slag fiber reinforced concrete can be used with construction material and product to replace normal concrete. If there is applied to structures such as precast concrete member and production of 2nd concrete product, it could be improved the productivity and reduction of construction duration etc.

Tests on Cementless Alkali-Activated Slag Concrete Using Lightweight Aggregates

  • Yang, Keun-Hyeok;Mun, Ju-Hyun;Lee, Kang-Seok;Song, Jin-Kyu
    • International Journal of Concrete Structures and Materials
    • /
    • v.5 no.2
    • /
    • pp.125-131
    • /
    • 2011
  • Five all-lightweight alkali-activated (AA) slag concrete mixes were tested according to the variation of water content to examine the significance and limitation on the development of cementless structural concrete using lightweight aggregates. The compressive strength development rate and shrinkage strain measured from the concrete specimens were compared with empirical models proposed by ACI 209 and EC 2 for portland cement normal weight concrete. Splitting tensile strength, and moduli of elasticity and rupture were recorded and compared with design equations specified in ACI 318-08 or EC 2, and a database compiled from the present study for ordinary portland cement (OPC) lightweight concrete, wherever possible. Test results showed that the slump loss of lightweight AA slag concrete decreased with the increase of water content. In addition, the compressive strength development and different mechanical properties of lightweight AA slag concrete were comparable with those of OPC lightweight concrete and conservative comparing with predictions obtained from code provisions. Therefore, it can be proposed that the lightweight AA slag concrete is practically applicable as an environmental-friendly structural concrete.

Fundamental Properties of Alkali Activated Slag Mortar with Different Activator Type (자극제의 종류에 따른 알칼리 활성화 슬래그 모르타르의 기초 특성)

  • An, Yang-Jin;Mun, Kyoung-Ju;Soh, Seung-Young;Soh, Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.789-792
    • /
    • 2006
  • The purpose of this study is to investigation the fundamental properties of alkali activated slag of type and concentration of alkali activator. In this paper sodium silicate, sodium carbonate and sodium hydroxide were used as alkaline activator and their concentration were 1, 3, 5 and 7 $Na_2O$ weight percent. The physical properties of alkali activated blast furnace slag cement mortar (AAS) were investigated by flow test and compressive strength. And the hydration properties of AAS characterized by X-ray diffraction and scanning electron microscope. Result show that Alkali activated slag mortar strengths were continuously increased with adding amount and ages. C-S-H were formed to be the main products up to 28days of hydration.

  • PDF

Evaluation of Flexural Behavior of Reinforced Concrete Beams Using Alkali Activated Slag Concrete (알칼리 활성 슬래그 콘크리트를 사용한 철근 콘크리트 보의 휨거동 평가)

  • Lee, Kwang-Myong;Seo, Jung-In
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.311-317
    • /
    • 2015
  • Cement zero concrete produced by alkali-activators and industrial by-products such as slag instead of cement, enables to solve the environmental pollution problems provoked by the exhaustion of natural resources and energy as well as the discharge of carbon dioxide. However, researches on the cement zero concrete are still limited to material studies and thus, study on the structural behavior of relevant members is essential to use the cement zero concrete as structural materials. This paper aims to evaluate experimentally and analytically the flexural behavior of RC beams using 50 MPa alkali activated slag concrete. To achieve such a goal, flexural tests on three types of RC beam specimens were conducted. A nonlinear analysis model is proposed using the modulus of elasticity and stress-strain relationship of alkali activated slag concrete. The analysis results obtained by the proposed model agree well with the experimental results, which could verify the validity of the proposed model.

Microstructural, Mechanical, and Durability Related Similarities in Concretes Based on OPC and Alkali-Activated Slag Binders

  • Vance, Kirk;Aguayo, Matthew;Dakhane, Akash;Ravikumar, Deepak;Jain, Jitendra;Neithalath, Narayanan
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.4
    • /
    • pp.289-299
    • /
    • 2014
  • Alkali-activated slag concretes are being extensively researched because of its potential sustainability-related benefits. For such concretes to be implemented in large scale concrete applications such as infrastructural and building elements, it is essential to understand its early and long-term performance characteristics vis-a'-vis conventional ordinary portland cement (OPC) based concretes. This paper presents a comprehensive study of the property and performance features including early-age isothermal calorimetric response, compressive strength development with time, microstructural features such as the pore volume and representative pore size, and accelerated chloride transport resistance of OPC and alkali-activated binder systems. Slag mixtures activated using sodium silicate solution ($SiO_2$-to-$Na_2O$ ratio or $M_s$ of 1-2) to provide a total alkalinity of 0.05 ($Na_2O$-to-binder ratio) are compared with OPC mixtures with and without partial cement replacement with Class F fly ash (20 % by mass) or silica fume (6 % by mass). Major similarities are noted between these binder systems for: (1) calorimetric response with respect to the presence of features even though the locations and peaks vary based on $M_s$, (2) compressive strength and its development, (3) total porosity and pore size, and (4) rapid chloride permeability and non-steady state migration coefficients. Moreover, electrical impedance based circuit models are used to bring out the microstructural features (resistance of the connected pores, and capacitances of the solid phase and pore-solid interface) that are similar in conventional OPC and alkali-activated slag concretes. This study thus demonstrates that performance-equivalent alkali-activated slag systems that are more sustainable from energy and environmental standpoints can be proportioned.

Resistance to Freezing and Thawing of Alkali-Activated Slag Concrete (알카리활성 슬래그 콘크리트의 동결융해 저항성)

  • Mun, Jae-Sung;Cho, Ah-Ram;Sim, Jae-Il;Yang, Keun-Hyeok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.105-106
    • /
    • 2011
  • The present tests examined the resistance to freezing and thawing of alkail-activated (AA) slag concrete having compressive strength between 30~56 MPa. To enhance the compressive strength and resistance to freezing and thawing of AA slag concrete, Na ions were used for an activator. Test results revealed that the resistance to freezing and thawing of AA slag concrete is comparable to that of cement concrete when compressive strength is more than 50 MPa.

  • PDF

Fundamental Study of Alkali-Activated Concrete Properties based on Modified Slag (개질 슬래그 기반 알칼리 활성 콘크리트의 기본 물성 연구)

  • An, Ji-Hwan;Jeon, Sung-Il;Kwon, Soo-Ahn
    • International Journal of Highway Engineering
    • /
    • v.17 no.2
    • /
    • pp.1-11
    • /
    • 2015
  • PURPOSES : This study set out to investigate the fundamental properties of alkali-activated concrete (AAC) using modified slag as the pavement maintenance material. METHODS: The material properties of modified slag based alkali-activated concrete (MSAAC) were analyzed and evaluated against those of alkali-activated slag concrete (AASC). Several mix formulations were considered, including one MSACC and four AASCs. The main variables considered in the study were slump, air content, compressive strength, rapid chloride permeability test, scaling resistance, freeze-thaw test, XRD, SEM, and EDS. RESULTS: MSAAC exhibits a compressive strength in excess of 21 MPa six hours after curing. Also, the charge passed of the MSACC was found to be less than 2000 coulombs after seven days and about 1000 coulombs after 28 days. The weight loss determined from a scaling test did not exceed $1kg/cm^2$ in the case of the MSACC, but that of the AASCs had already exceeded $1kg/cm^2$ at the 10th cycle. Based on the results of the freeze-thaw test, the relative dynamic modulus of every mix was found to be in excess of 90%. An energy dispersive spectroscopy(EDS) analysis found that the weight rate percentage of the calcium and aluminum in the MSAAC mix is twice that of the AASC mixes. CONCLUSIONS : It was found that the MSAAC mix exhibits significantly better performance than AASC mixes, based on various fundamental properties.

The Strength Properties of Alkali-Activated Slag Mortars by Combined Caustic Alkali with Sodium Carbonate as Activator (가성알칼리와 탄산나트륨을 혼합한 활성화제를 사용한 알칼리 활성화 고로슬래그 모르타르의 강도 특성)

  • Kim, Tae-Wan
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.745-752
    • /
    • 2012
  • This paper studies the effect of the compressive strength for combined alkali-activated slag mortars. The effect of activators such as alkali type and dosage factor on the strength was investigated. The alkalis combinations made using five caustic alkalis (sodium hydroxide (NaOH, A series), calcium hydroxide ($Ca(OH)_2$, B series), magnesium hydroxide ($Mg(OH)_2$, C series), aluminum hydroxide ($Al(OH)_3$, D series), and potassium hydroxide (KOH, E series)) with sodium carbonate ($Na_2CO_3$) were evaluated. The mixtures were combined in different dosage at 1M, 2M, and 3M. The study results showed that the compressive strength of combined alkali-activated slag mortars tended to increase with increasing sodium carbonate. The strength of combined alkali-activated slag mortars was better than that of control cases (without sodium carbonate). The result from scanning electron microscopy (SEM) analysis confirmed that there were reaction products of calcium silicate hydrate (C-S-H) and alumina-silicate gels from combined alkali-activated slag specimens.