• Title/Summary/Keyword: Alignment error

Search Result 312, Processing Time 0.029 seconds

웨이퍼 스텝퍼에서의 기준정렬을 위한 2차원 버니어 패턴의 성능예측

  • 이종현;장원익;최부연;장기호;김도훈;유형준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.243-248
    • /
    • 1993
  • New methodology for fiducial alignment is proposed to improve the alignment accuracy in wafer steppers. The positioning error is detected by PSD(Position Sensitive Detector)when 2-dimensional vernier patterns on a reticle on a reticle are projected on the fiducial marks of wafer stage. The width and period of vernier patterns are deter mined to get the highest S/N ratio for the exposure wavelength 248.4nm of KrF excimer laser. This new method has an advantage of higher accuracy and faster alignment over the conventional one.

  • PDF

Transfer alignment for strapdown inertial navigation system by angle matching method (스트랩다운 관성항법장치의 각을 이용한 초기전달 정렬기법)

  • 송기원;전창배;김현백
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.29-33
    • /
    • 1993
  • This paper suggests Kalman filter formulation using by precision GINS output angle for SDINS initial transfer alignment of missile. The Kalman filter model was derived from quaternion parameters and the transfer alignment system by angle matching method satisfies azimuth observability in horizontal angular motion. The estimated error of SDINS attitude settles to less 3mrad(1.sigma.) in 200 seconds at proper sea state.

  • PDF

A Study of the Multiheading INS Alignment (Multiheading 방법을 이용한 INS의 초기정렬에 관한 연구)

  • 윤희광;송택렬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.98-98
    • /
    • 2000
  • In this paper, we present a Multiheading Method for INS initial. The system is not observable for initial alignment however using pseudo tilt angles and pseudo sensor errors become observable. We suggest a new Multiple Method to find the real sensor errors by using the converted system dynamics. The results show that we can find the sensor errors very accurately by the proposed method.

  • PDF

Gravity Compensation Techniques for Enhancing Optical Performance in Satellite Multi-band Optical Sensor (위성용 다중대역광학센서의 광학 성능 향상을 위한 자중보상기법)

  • Do-hee Yoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.127-139
    • /
    • 2024
  • This paper discusses a gravity compensation technique designed to reduce wavefront error caused by gravity during the assembly and alignment of satellite multi-band optical sensor. For this study, the wavefront error caused by gravity was analyzed for the opto-mechanical structure of multi-band optical sensor. Wavefront error, an indicator of optical performance, was computed by using the displacements of optics calculated through structural analysis and optical sensitivity calculated through optical analysis. Since the calculated wavefront error caused by gravity exceeded the allocated budget, the gravity compensation technique was required. This compensation technique reduces wavefront error effectively by applying the compensation load to the appropriate position of the housing tube. This method successfully meets the wavefront error budget for all bands. In the future, a gravity compensation equipment applying this technique will be manufactured and used for assembly and alignment of multi-band optical sensor.

Observability Analysis of a Lever Arm Error for Velocity Matching in Transfer Alignment (전달정렬의 속도정합에 대한 지렛대 거리 오차의 가관측성 분석)

  • Yang, Cheol-Kwan;Shim, Duk-Sun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.276-284
    • /
    • 2013
  • This paper considers the transfer alignment in the inertial navigation system and the observability analysis is performed for velocity matching. The state variable of the Kalman filter is modeled including the lever arm error and the measurement equation is obtained. The SOM(Stripped Observability Matrix) method is used for the observability analysis for various maneuvering conditions of the vehicle, which gives the full state observability condition as a specific maneuver sequence of the vehicle. While the observability analysis of a lever arm effect in the existing papers is mainly performed by simulations, we performed it analytically by the observability analysis method. The analysis result is verified using the computer simulations.

Methodology of System Alignment using Angular Error Compensation Among Multi-Axes (다중 좌표계간 각도오차 보정을 통한 체계정렬 기법)

  • Ha, Jong-Soo;Lee, Eui-Hyuk;Lee, Hyun-Ah;Park, Gyu-Churl;Cho, Kyu-Gong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.342-349
    • /
    • 2014
  • MRDS is a short range missile/rocket defense system which protects a main battle tank(MBT) from threats in a short range. It is composed of 2 radars, 2 infrared trackers(IRTs), 1 fire control computer(FCC), 2 launchers and countermeasures. To guarantee the performance of the MRDS, these components have to be mounted on the vehicle with the known positions and directions and it is required to compensate the alignment errors. In this paper, a system alignment method using angular error compensation is proposed to install its components within a tolerance on the MBT. The test results are presented to evaluate and verify the effectiveness of the proposed method.

A Study on the Evaluation of the Optical Head of a Near-field Optical Recording System and Interference Pattern Analysis (근접장 광기록 헤드의 광학적 성능 평가와 정렬 오차에 대한 간섭 무늬 패턴 분석에 대한 연구)

  • Yoon Hyoung Kil;Gweon Dae Gab;Lee Jun Hee;Jung Jae Hwa;Oh Hyung Ryeol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.5 s.170
    • /
    • pp.80-86
    • /
    • 2005
  • Optical performance evaluation results and an interference fringe pattern analysis of alignment errors for an optical head of a near-field receding (NFR) system are presented. The focusing unit is an optical head of a NFR system and is composed of a solid immersion lens (SIL) and an objective lens (OL). Generally, the size of the focusing unit is smaller than that of the conventional optical recording head. Hence there are difficulties to assemble the small focusing unit precisely. We composed an evaluation system with an interferometer and evaluated some focusing unit samples aligned and assembled by manual and present the obtained results. Using the conventional optical tool, Code V, a tolerance analysis of the alignment error between the SIL and the objective lens and an interference pattern analysis for the assembly error are executed. Then, through an analysis of the simulation results, the conceptual auto-alignment methodology using a neural network approach is considered.

Initial Alignment Algorithm for the SDINS Using an Attitude Determination GPS Receiver (자세 측정용 GPS 수신기를 이용한 SDINS의 초기정렬 알고리즘)

  • Kim, Young-Sun;Oh, Sang-Heon;Hwang, Dong-Hwan;Lee, Sang-Jeong;Jeon, Chang-Bae;Song, Ki-Won;Park, Chan-Ju
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.3
    • /
    • pp.249-255
    • /
    • 2002
  • Since the stationary alignment process of the SDINS is not completely observable, some furls of the aided alignment have been applied. The purpose of this paper is to propose a new initial alignment algorithm, which utilizes the attitude output from the AGPS(Attitude Determination GPS) receiver and to demonstrate the feasibility of the proposed algorithm with several experimental results. A Kalman filter is designed for utilizing the attitude output as well as the zero velocity information. Also analyzed is the observability of the SDINS error model. To show the feasibility of the proposed scheme, we implement an alignment system where HG1700AE IMU (Inertial Measurement Unit) from Honeywell and an AGPS receiver designed at Chungnam National University are used. Test trials are done to evaluate the performance of the proposed alignment scheme. The proposed algorithm provides as good initial alignment performance as a high accurate navigation system, MAPS(Modular Azimuth Positioning System) INS.

Design and Evaluation of INS Initial Alignment under Vibration Environment of Aircraft Run-up (항공기 Run-Up 진동 환경에서의 관성항법장치 초기 정렬 방법 설계 및 평가)

  • Yu, Haesung;Lee, Inseop;Oh, JuHyun;Kim, CheonJoong;Park, Heung-won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.691-698
    • /
    • 2015
  • Inertial Navigation Systems (INS) are widely used as the main navigation device for aircraft. To get the initial attitude, the INS requires the initial alignment before navigation starts. An aircraft also needs an engine test procedure that causes some vibrations before flight. An INS can't be aligned in a vibration environment so the initial alignment is performed before the aircraft engine test. Therefore, the initial alignment time of an INS has been a major factor in limiting an aircraft's takeoff response time. In this paper, we designed an initial alignment algorithm that can be executed even in disturbances such as aircraft run-up. We demonstrated verification of the algorithm that is embedded on the real INS and testing methods to evaluate the alignment of the INS. We also analyzed the test results of the proposed initial alignment algorithm that is performed during a real aircraft run-up.

A Study of An Initial Alignment Method of Underwater Vehicle Dropped from Aircraft (항공기에서 투하되는 수중운동체의 초기정렬기법 연구)

  • 류동기;김삼수
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.21-29
    • /
    • 2003
  • The Strap Down Inertial Measurement Unit(SDIMU) is recently used for the sensor package of the modern underwater vehicles such as torpedoes and unmanned underwater-vehicles. For using SDIMU, an initial alignment must be carried out before the fire or navigation stage. The general initial alignment methods require that a mother vehicle Is a stationary condition or the Inertial Navigation System(INS) of vehicle is received the specific of data navigation from the mother vehicle. But an underwater vehicle dropped from aircraft is hard to satisfy above both necessary conditions of the general initial alignment. So, we suggest a new strap down initial alignment method of an underwater vehicle dropped from aircraft without using any aided sensors. The highlight point of this method is that a period of initial alignment is not before the fire but during running stage to fix alignment error. And we verify it by analyzing various data of S/W simulations, Hardware In the Loop Simulation(HILS) tests and sea trials.