• Title/Summary/Keyword: Algorithmic

Search Result 375, Processing Time 0.027 seconds

Examining the relationship between educational effectiveness and computational thinking in smart learning environment

  • Han, Oakyoung;Kim, Jaehyoun
    • Journal of Internet Computing and Services
    • /
    • v.19 no.2
    • /
    • pp.57-67
    • /
    • 2018
  • The $4^{th}$ industrial revolution has brought innovation in the educational environment. The purpose of this study is to verify the educational effectiveness of smart learning environment especially with the computational thinking. A big data analysis was performed to confirm that computational thinking is the one to prepare the 4th industrial revolution. To teach computational thinking at university, educational design should be careful. This study verified the relationship between improvement of computational thinking ability and major of students with coding education. There was difference in effectiveness of the coding education depending on the major of students, it means students must be guaranteed to be educated by the differentiated coding education for different major. This study extracted factors of computational thinking through literature review. Thirteen research hypotheses were applied for the statistical analysis in R language. It was proved that expectation of class and improvement of abstraction ability and algorithmic thinking ability had mediation effect to the relationship between knowledge acquisition and problem-solving abilities. Based on this study, effectiveness of education can be improved, and it will lead to produce a lot of distinguished students who are ready for the 4th industrial revolution.

A Study on Discrete Mathematics Subjects Focused on the Network Problem for the Mathematically Gifted Students in the Elementary School (초등 영재교육에 적용 가능한 이산수학 주제의 내용 구성에 관한 소고 -네트워크 문제를 중심으로-)

  • Choi, Keun-Bae
    • School Mathematics
    • /
    • v.7 no.4
    • /
    • pp.353-373
    • /
    • 2005
  • The purpose of this paper is to analysis the basic network problem which can be applied to the mathematically gifted students in elementary school. Mainly, we discuss didactic transpositions of the double counting principle, the game of sprouts, Eulerian graph problem, and the minimum connector problem. Here the double counting principle is related to the handshaking lemma; in any graph, the sum of all the vertex-degree is equal to the number of edges. The selection of these subjects are based on the viewpoint; to familiar to graph theory, to raise algorithmic thinking, to apply to the real-world problem. The theoretical background of didactic transpositions of these subjects are based on the Polya's mathematical heuristics and Lakatos's philosophy of mathematics; quasi-empirical, proofs and refutations as a logic of mathematical discovery.

  • PDF

A Software Size Estimation Using Weighted FFP (가중치를 적용한 FFP 소프트웨어 규모 측정)

  • Park Juseok
    • Journal of Internet Computing and Services
    • /
    • v.6 no.2
    • /
    • pp.37-47
    • /
    • 2005
  • Most of the methods of estimating the size of software are based on the functions provided to costumers and in the process of granting the score to each function we consider the complexity during the process. The FFP technique has advantages applied to vast areas like data management. real-time system, algorithmic software, etc, but on the other hand, has disadvantage on estimating sizes for weights for necessary function elements. This paper proposes the estimating method for software size by considering the complexity of each function elements in full function point calculation method applied to a new developed project and maintenance projects. For this, based on function point by using surveyed data proved the validity of proposed method. The valid result. was that the function elements, the attributes used in size estimation of software, est mated better estimated sizes than in the case of other weights being applied.

  • PDF

A Parallel Implementation of Multiple Non-overlapping Cameras for Robot Pose Estimation

  • Ragab, Mohammad Ehab;Elkabbany, Ghada Farouk
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.4103-4117
    • /
    • 2014
  • Image processing and computer vision algorithms are gaining larger concern in a variety of application areas such as robotics and man-machine interaction. Vision allows the development of flexible, intelligent, and less intrusive approaches than most of the other sensor systems. In this work, we determine the location and orientation of a mobile robot which is crucial for performing its tasks. In order to be able to operate in real time there is a need to speed up different vision routines. Therefore, we present and evaluate a method for introducing parallelism into the multiple non-overlapping camera pose estimation algorithm proposed in [1]. In this algorithm the problem has been solved in real time using multiple non-overlapping cameras and the Extended Kalman Filter (EKF). Four cameras arranged in two back-to-back pairs are put on the platform of a moving robot. An important benefit of using multiple cameras for robot pose estimation is the capability of resolving vision uncertainties such as the bas-relief ambiguity. The proposed method is based on algorithmic skeletons for low, medium and high levels of parallelization. The analysis shows that the use of a multiprocessor system enhances the system performance by about 87%. In addition, the proposed design is scalable, which is necaccery in this application where the number of features changes repeatedly.

Fast Video Fire Detection Using Luminous Smoke and Textured Flame Features

  • Ince, Ibrahim Furkan;Yildirim, Mustafa Eren;Salman, Yucel Batu;Ince, Omer Faruk;Lee, Geun-Hoo;Park, Jang-Sik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.12
    • /
    • pp.5485-5506
    • /
    • 2016
  • In this article, a video based fire detection framework for CCTV surveillancesystems is presented. Two novel features and a novel image type with their corresponding algorithmsareproposed for this purpose. One is for the slow-smoke detection and another one is for fast-smoke/flame detection. The basic idea is slow-smoke has a highly varying chrominance/luminance texture in long periods and fast-smoke/flame has a highly varying texture waiting at the same location for long consecutive periods. Experiments with a large number of smoke/flame and non-smoke/flame video sequences outputs promising results in terms of algorithmic accuracy and speed.

An Analysis on the Mathematical Problem Solving via Intuitive Thinking of the Korean and American 6th Grade Students (한국과 미국 6학년 학생들의 직관적 사고에 의한 수학 문제해결 분석)

  • Lee, Dae Hyun
    • The Mathematical Education
    • /
    • v.55 no.1
    • /
    • pp.21-39
    • /
    • 2016
  • This research examined the Korean and American $6^{th}$ grade students' mathematical problem solving ability and methods via an intuitive thinking. For this, the survey research was used. The researcher developed the questionnaire which consists of problems with intuitive and algorithmic problem solving in number and operation, figure and measurement areas. 57 Korean $6^{th}$ grade students and 60 American $6^{th}$ grade students participated. The result of the analysis showed that Korean students revealed a higher percentage than American students in correct answers. But it was higher in the rate of Korean students attempted to use the algorithm. Two countries' students revealed higher rates in that they tried to solve the problems using intuitive thinking in geometry and measurement areas. Students in both countries showed the lower percentages of correct answer in problem solving to identify the impact of counterintuitive thinking. They were affected by potential infinity concept and the character of intuition in the problem solving process regardless of the educational environments and cultures.

AI Processor Technology Trends (인공지능 프로세서 기술 동향)

  • Kwon, Youngsu
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.5
    • /
    • pp.121-134
    • /
    • 2018
  • The Von Neumann based architecture of the modern computer has dominated the computing industry for the past 50 years, sparking the digital revolution and propelling us into today's information age. Recent research focus and market trends have shown significant effort toward the advancement and application of artificial intelligence technologies. Although artificial intelligence has been studied for decades since the Turing machine was first introduced, the field has recently emerged into the spotlight thanks to remarkable milestones such as AlexNet-CNN and Alpha-Go, whose neural-network based deep learning methods have achieved a ground-breaking performance superior to existing recognition, classification, and decision algorithms. Unprecedented results in a wide variety of applications (drones, autonomous driving, robots, stock markets, computer vision, voice, and so on) have signaled the beginning of a golden age for artificial intelligence after 40 years of relative dormancy. Algorithmic research continues to progress at a breath-taking pace as evidenced by the rate of new neural networks being announced. However, traditional Von Neumann based architectures have proven to be inadequate in terms of computation power, and inherently inefficient in their processing of vastly parallel computations, which is a characteristic of deep neural networks. Consequently, global conglomerates such as Intel, Huawei, and Google, as well as large domestic corporations and fabless companies are developing dedicated semiconductor chips customized for artificial intelligence computations. The AI Processor Research Laboratory at ETRI is focusing on the research and development of super low-power AI processor chips. In this article, we present the current trends in computation platform, parallel processing, AI processor, and super-threaded AI processor research being conducted at ETRI.

The Architectural Analysis of the Buddy System for Qualitative Risk Analysis (정성적 위험 분석을 위한 버디 시스템의 구조 분석)

  • Jeongwon Yoon;Kim, Hong-Keun
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 1995.11a
    • /
    • pp.51-58
    • /
    • 1995
  • The importance of the risk analysis tool has been recognized and its use also has been emphasized by a number of researchers recently The methodology were examined but neither algorithms nor practical applications have been implemented or practiced in Korea. In this paper, the architecture of the Buddy System, one of the automated risk assessment tools. is analyzed in depth to provide the algorithmic understanding and to promote the development of the risk analysis methodology. The Buddy System mainly uses three main factors of vulnerability, threat and countermeasures as a nucleus of the qualatative analysis with the modified loss expectancy value. These factors are identified and assessed by the separation of duties between the end user and security analyst. The Buddy System uses five axioms as its bases of assessment algorithm and the assessed vulnerability level is strictly within these axioms. Since the In-place countermeasures reduce the vulnerability level up to a certain level. the security analyst may use "what if " model to examine the impact of additional countermeasures by proposing each to reduce the vulnerability level further to within the acceptable range. The emphasis on the qualitative approach on vulnerability leveling is very well balanced with the quantitative analysis that the system performance is prominent.prominent.

  • PDF

An Analytical Evaluation of 2D Mesh-connected SIMD Architecture for Parallel Matrix Multiplication (2D Mesh SIMD 구조에서의 병렬 행렬 곱셈의 수치적 성능 분석)

  • Kim, Cheong-Ghil
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.10 no.1
    • /
    • pp.7-13
    • /
    • 2011
  • Matrix multiplication is a fundamental operation of linear algebra and arises in many areas of science and engineering. This paper introduces an efficient parallel matrix multiplication scheme on N ${\times}$ N mesh-connected SIMD array processor, called multiple hierarchical SIMD architecture (HMSA). The architectural characteristic of HMSA is the hierarchically structured control units which consist of a global control unit, N local control units configured diagonally, and $N^2$ processing elements (PEs) arranged in an N ${\times}$ N array. PEs are communicating through local buses connecting four adjacent neighbor PEs in mesh-torus networks and global buses running across the rows and columns called horizontal buses and vertical buses, respectively. This architecture enables HMSA to have the features of diagonally indexed concurrent broadcast and the accessibility to either rows (row control mode) or columns (column control mode) of 2D array PEs alternately. An algorithmic mapping method is used for performance evaluation by mapping matrix multiplication on the proposed architecture. The asymptotic time complexities of them are evaluated and the result shows that paralle matrix multiplication on HMSA can provide significant performance improvement.

  • PDF

A Study on Intuitive Technique of Risk Assessment for Route of Ships Transporting Hazardous and Noxious Substance

  • Jeong, Min-Gi;Lee, Moon-Jin;Lee, Eun-Bang
    • Journal of Navigation and Port Research
    • /
    • v.42 no.2
    • /
    • pp.97-106
    • /
    • 2018
  • Despite the development of safety measures and improvements in preventive systems technologies, maritime traffic accidents that involve ships carrying hazardous and noxious substances (HNS) continuously occur owing to increased amount of HNS goods transported and the growing number of HNS fleet. To prevent maritime traffic accidents involving ships carrying HNS, this study proposes an intuitive route risk assessment technique using risk contours that can be visually and quantitatively analyzed. The proposed technique offers continuous information based on quantified values. It determines and structures route risk factors classified as absolute danger, absolute factors, and influential factors within the assessment area. The route risk is assessed in accordance with the proposed algorithmic procedures by means of contour maps overlaid on electronic charts for visualization. To verify the effectiveness of the proposed route risk assessment technique, experimental case studies under various conditions were conducted to compare results obtained by the proposed technique to actual route plans used by five representative companies operating the model ship carrying HNS. This technique is beneficial not only for assessing the route risk of ships carrying HNS, but also for identifying better route options such as recommended routes and enhancing navigation safety. Furthermore, this technique can be used to develop optimized route plans for current maritime conditions in addition to future autonomous navigation application.