• 제목/요약/키워드: Algorithm selection

검색결과 2,493건 처리시간 0.023초

대규모 종합감시시스템 환경에서의 비디오의 특징분석 기반 감시 알고리즘 선택 기법 (A Surveillance Algorithm Selection Method Based on Video Features for Large-scale Integrated Surveillance Systems)

  • 박광영;박구만
    • 한국위성정보통신학회논문지
    • /
    • 제7권1호
    • /
    • pp.33-38
    • /
    • 2012
  • 본 논문에서는 대규모 종합감시시스템 환경에서 비디오의 특징을 분석하여 비디오가 촬영되는 환경에 적합한 지능형 영상분석 알고리즘 선택 기준을 제안하였다. 대규모 종합감시시스템 환경의 예로 도시철도 감시시스템을 사용하였다. 본 시스템에 설치된 카메라에 입력되는 비디오의 특징을 위치와 용도 및 상황별로 분석하였다. 분석을 기반으로 하여 적합한 비디오 감시 알고리즘을 선택하는 기준을 제시하였으며 상황 처리 시나리오를 제시하였다.

A DC Motor Speed Control by Selection of PID Parameter using Genetic Algorithm

  • Yoo, Heui-Han;Lee, Yun-Hyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권3호
    • /
    • pp.293-300
    • /
    • 2007
  • The aim of this paper is to design a speed controller of a DC motor by selection of a PID parameters using genetic algorithm. The model of a DC motor is considered as a typical non-oscillatory, second-order system, And this paper compares three kinds of tuning methods of parameter for PID controller. One is the controller design by the genetic algorithm. second is the controller design by the model matching method third is the controller design by Ziegler and Nichols method. It was found that the proposed PID parameters adjustment by the genetic algorithm is better than the Ziegler & Nickels' method. And also found that the results of the method by the genetic algorithm is nearly same as the model matching method which is analytical method. The proposed method could be applied to the higher order system which is not easy to use the model matching method.

Task Scheduling and Resource Management Strategy for Edge Cloud Computing Using Improved Genetic Algorithm

  • Xiuye Yin;Liyong Chen
    • Journal of Information Processing Systems
    • /
    • 제19권4호
    • /
    • pp.450-464
    • /
    • 2023
  • To address the problems of large system overhead and low timeliness when dealing with task scheduling in mobile edge cloud computing, a task scheduling and resource management strategy for edge cloud computing based on an improved genetic algorithm was proposed. First, a user task scheduling system model based on edge cloud computing was constructed using the Shannon theorem, including calculation, communication, and network models. In addition, a multi-objective optimization model, including delay and energy consumption, was constructed to minimize the sum of two weights. Finally, the selection, crossover, and mutation operations of the genetic algorithm were improved using the best reservation selection algorithm and normal distribution crossover operator. Furthermore, an improved legacy algorithm was selected to deal with the multi-objective problem and acquire the optimal solution, that is, the best computing task scheduling scheme. The experimental analysis of the proposed strategy based on the MATLAB simulation platform shows that its energy loss does not exceed 50 J, and the time delay is 23.2 ms, which are better than those of other comparison strategies.

Variable Selection Based on Mutual Information

  • Huh, Moon-Y.;Choi, Byong-Su
    • Communications for Statistical Applications and Methods
    • /
    • 제16권1호
    • /
    • pp.143-155
    • /
    • 2009
  • Best subset selection procedure based on mutual information (MI) between a set of explanatory variables and a dependent class variable is suggested. Derivation of multivariate MI is based on normal mixtures. Several types of normal mixtures are proposed. Also a best subset selection algorithm is proposed. Four real data sets are employed to demonstrate the efficiency of the proposals.

$L^1$ Bandwidth Selection in Kernel Regression Function Estimation

  • Jhun, Myong-Shic
    • Journal of the Korean Statistical Society
    • /
    • 제17권1호
    • /
    • pp.1-8
    • /
    • 1988
  • Kernel estimates of an unknown regression function are studied. Bandwidth selection rule minimizing integrated absolute error loss function is considered. Under some reasonable assumptions, it is shown that the optimal bandwidth is unique and can be computed by using bisection algorithm. Adaptive bandwidth selection rule is proposed.

  • PDF

최적 모듈 선택 아키텍쳐 합성을 위한 전력 감소 Force-Directed 스케쥴링 (Low Power Force-Directed scheduling for Optimal module selection Architecture Synthesis)

  • 최지영;김희석
    • 한국통신학회논문지
    • /
    • 제29권9A호
    • /
    • pp.1091-1100
    • /
    • 2004
  • 본 논문은 최적 모듈 선택 아키텍쳐 합성을 위한 천력 감소 Force-directed 스케줄링을 제안한다. 제안한 전력 강소 스케줄링은 행위 수준 언어를 업력으로 스위칭 활동-(switching activity) 을 고려하여 기존의 FDS 스케쥴링을 저 전력으로 고려한 FDS_LP 앙고리듬을 수행한다. 제안한 FDSL LP 알고리듬은 스위칭 활동을 최소로 하는 동적 파워를 포스 개념에 적용하여 전력 감소를 수행한다. 모듈 선택에서는 전력, 면적, 지연의 매개 변수를 고려하여 최척 모율 성택 RT 라이브러리를 구축한다. 구축한 RT 라이브러리에서 최적 파라메터를 구하기 위해서 프렌치 앤드 바운드 방법을 사용한 최걱 요율 선택 방법을 제안한다. 비교 실험에서는 최적 모율 선택을 고려한 제안한 FDS LP 앙고리듬과 기존의 FDS 알고리듬간의 전력 차이를 비교하여 최대 23.9 % 까지 전력 감소를 얻을 수 있다.

해상 탐지 영상에서의 비행체 표적 선정에 관한 연구 (A Study on Target Selection from Seeker Image of Aerial Vehicle in Sea Environment)

  • 김기범;백인혜;권기정
    • 한국군사과학기술학회지
    • /
    • 제20권5호
    • /
    • pp.708-716
    • /
    • 2017
  • We deal with the target selection in seeker-detection image through network, using the detection information from aerial vehicle and the target information from surveillance and reconnaissance system. Especially, we constrain the sea battle environment, where it is difficult to perform scene-matching rather than land. In this paper, we suggest the target selection algorithm based on the confidence estimation with respect to distance and size. In detail, we propose the generation method of reference point for distance evaluation, and we investigate the effect of pixel margin and target course for size evaluation. Finally, the proposed algorithm is simulated and analyzed through several scenarios.

Hybrid Feature Selection Using Genetic Algorithm and Information Theory

  • Cho, Jae Hoon;Lee, Dae-Jong;Park, Jin-Il;Chun, Myung-Geun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제13권1호
    • /
    • pp.73-82
    • /
    • 2013
  • In pattern classification, feature selection is an important factor in the performance of classifiers. In particular, when classifying a large number of features or variables, the accuracy and computational time of the classifier can be improved by using the relevant feature subset to remove the irrelevant, redundant, or noisy data. The proposed method consists of two parts: a wrapper part with an improved genetic algorithm(GA) using a new reproduction method and a filter part using mutual information. We also considered feature selection methods based on mutual information(MI) to improve computational complexity. Experimental results show that this method can achieve better performance in pattern recognition problems than other conventional solutions.

침입탐지시스템에서의 특징 선택에 대한 연구 (A Study for Feature Selection in the Intrusion Detection System)

  • 한명묵
    • 융합보안논문지
    • /
    • 제6권3호
    • /
    • pp.87-95
    • /
    • 2006
  • 침입은 컴퓨터 자원의 무결성, 기밀성, 유효성을 저해하고 컴퓨터 시스템의 보안정책을 파괴하는 일련의 행위의 집합이다. 이러한 침입을 탐지하는 침입탐지시스템은 데이터 수집, 데이터의 가공 및 축약, 침입 분석 및 탐지 그리고 보고 및 대응의 4 단계로 구성되어진다. 침입탐지시스템의 방대한 데이터가 수집된 후, 침입을 효율적으로 탐지하기 위해서는 특징 선택이 중요하다. 이 논문에서 유전자 알고리즘과 결정트리를 활용한 특징 선택 방법을 제안한다. 또한 KDD 데이터에서 실험을 통해 방법의 유효성을 검증한다.

  • PDF

Hybrid Feature Selection Method Based on Genetic Algorithm for the Diagnosis of Coronary Heart Disease

  • Wiharto, Wiharto;Suryani, Esti;Setyawan, Sigit;Putra, Bintang PE
    • Journal of information and communication convergence engineering
    • /
    • 제20권1호
    • /
    • pp.31-40
    • /
    • 2022
  • Coronary heart disease (CHD) is a comorbidity of COVID-19; therefore, routine early diagnosis is crucial. A large number of examination attributes in the context of diagnosing CHD is a distinct obstacle during the pandemic when the number of health service users is significant. The development of a precise machine learning model for diagnosis with a minimum number of examination attributes can allow examinations and healthcare actions to be undertaken quickly. This study proposes a CHD diagnosis model based on feature selection, data balancing, and ensemble-based classification methods. In the feature selection stage, a hybrid SVM-GA combined with fast correlation-based filter (FCBF) is used. The proposed system achieved an accuracy of 94.60% and area under the curve (AUC) of 97.5% when tested on the z-Alizadeh Sani dataset and used only 8 of 54 inspection attributes. In terms of performance, the proposed model can be placed in the very good category.