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ABSTRACT

Kernel estimates of an unknown regression function are studied. Bandwidth selection
rule minimizing integrated absolute error loss function is considered. Under some reasonable
assumptions, it is shown that the optimal bandwidth is unique and can be computed by
using bisection algorithm, Adaptive bandwidth selection rule is proposed.

1. Introduction

Let (X:Y;), 1=i=n, be a random sample of size n from a bivariate distribution with
a common Jjoint density f(x,y). The conditional mean or regression of Y on X is

r(x) =E(Y|X=x) (1.1)
= fyf(x.y)/fx(x)dy

where fx(x) is a marginal density of X. Nadaraya(1964) and Watson(1964) independently
proposed nonparametric estimators of r(x) based on the kernel method as introduced by
Rosenblatt(1956) for density estimation, In specific the estimates have the form
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raGxih) =)™t 3 YR X;)/h)/ (nh) ™! 5 K(x=X;)/h), (1.2)
]: J:

where K( - ) is a kernel function and h is a bandwidth such that h—>0 as n—>co, As in kernel
type density estimation (cf. Rosenblatt:1971) there is very little to choose between the
various kernels, However, the choice of bandwidth is very crucial since a small h gives an
estimator with a large variance, but a large h yields a large bias for the estimator.

Since the variance of ra(x:h) is inversely proportional to fx(x), integrated weighted sq-
uared error loss function

IWSE (h) = f(r (x:h)—r{(x)? {2 (x)dx

has been considered as a reasonable measure of the performance of the estimator, By noticing
the expansion of

E{IWSE (h)}=A(nh) " +Bh* +o((nh) " "+h*)

where A and B are constants depending on underlying density f, Hall(1984) considered the
optimization of h in a range [c,n™®, ;n™®] for c;»¢,>0.  Rice(1984) obtained asymptotic
optimality in the same range in the fixed design setting. Hardle and Kelly (1987) considered
cross-validatory choice for modified ro(x:;h), which has nonrandom denominator f(x), and
obtained asymptotic optimal bandwidth for the IWSE criterion.

In this paper, we consider integrated absolute error loss

IAE(h) =f|r,(x¢h)—r(x)|dx (1.3)

as a criterion for the selection of the bandwidth h. Even though it is an interesting criterion
for the choice of the bandwidth h, mainly because of the mathematical tractability, theory
for this criterion is quite slow to develop. The main result of this paper is that the optimal
h minimizing the limit of normalized IAE(h) is unique and can be obtained by using so called
bisection algorithm. The theory in this paper can be applied for integrated weighted absolute
error

IWAE(h) = f | r (x:h)—r (x) | f,(x)dx,

with slight modification. Adaptive choice of the bandwidth is also proposed.
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2. Some Preliminaries

Assumptions ;

(A1) f(x,y) < C(14x*+y*)™>? for some constant C,,

(A.2) r(x) and fx(x) are continuously differentiable up to second order.

(A.3) K(x) is a symmetric density and K(x)<C,(1+4x?)™® for some constant C,.
Let F be a class of density functions satisfying (A.1) and (A.2), and

a(x)={{r () E,(.)I1? (x)—1), (21)
B =EC(Y-1)2 [X=x)f,(x), (2.2)
K, = fg x2K(x)dx,

K|l = {frK? (x)dx} V2,

For fixed h and x, under assumptions (A.1), (A.2), and (A.3), from Rosenblatt(1969),

we have

rolxih) —r(x)=(1/2YhZK, £, (x) la(x)+ f(x) 7' W, (2.3)

+0,(h1)+0, (07! h T4~/ 2h3/2)
where W,, is asymptotically normal with mean zero and variance
(nh)~V||K||2B8 (x) as n—oo provided nh—00 as n—00

The rate at which the difference {ro(x) —1(x)} in (2.3) tends to zero as n—>oo is maximized
to Op(n™®%) if we set

= c(f)n"L/5

where c(f) is a positive constant depending on the underlying density function f(x,y). We
aim at finding optimal c(f) for the integrated absolute error loss function(1.3).
For fixed ¢>0 and x € R, and n=1, let

Zn(x,e)=n%5(r (xien™V%) —r(x)].

Proposition 1. Under the assumptions (A.1), (A.2), and (A.3), Zn(x,c) weakly converges
to a normal random variable with mean
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ulfix,e)=(1/2) 2Ky f, (x) "t a(x) (24)
and variance
e (fix,e)= (/) IK[? B (x) (2.5)

Moreover, | Zn(x,c)| , n>1, are uniformly integrable, for a. e. x.
Proof. The asymptotic normality of Zn(x,c) immediately follows from (2.3), and uni-
form integrability follows from the fact that

I|z |>a| Z, (x,¢)|dPL (1/a) E(Z,(x,c)¥) <. A

3. Resuits

For convenience, we define following notations. Let ® and ¢ denote the standard normal
distribution function and density respectively. Let Z be a standard normal random variable,
and ¥(y)=E|Z—yl].

Then
¢(y)=(20(y)-11y+2¢(y).
Note that
lg () =1yt
¢ (yy=20(y) -1, and

¢" (y)=2¢ (y)>0.

So, ¢ is convex and its first two derivatives are bounded.

We consider the absolute error over an interval where the marginal density function
fx(x) is bounded away from zero.
Suppose that

min bfx(x)=P>0.

A= X g

With h = cn™%, where ¢ )0 is fixed, let
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b
Jn(c)=n2/5f [ 1,(x,cn™1/5) —r(x)]| dx
and
Va(c)=E(],(c)],

Proposition 2. Under the assumptions (A.1), (A.2), and (A.3),
li _r® . u(fix,c)
im 7. (=f o(fix,c) ¢ (hrrtsy) dx.,

Proof. If Z denotes a standard normal random variable, then by Proposition 1,

(fix.c)J}

T X, C

d
Zo(xve) 3 alfix, ) {zZ+(5
and

lim E|Zn(x.c)[=g-(f:x,c)¢ﬂg(f‘x.c)J
n=peo

oc(fix,c)

as n—oo for a.e. x. So, by using bounded convergence theorem, the result can be obtained
easily. B
Now, we will find the optimal c(f) which minimizes limit of the normalized IAE,

b
lim nz/sj' | ro(x,en™178) = r(x) |dx,
a

neo

H(f,c)=1lim ¥, (x,c)

n»w

b H
= (o tix, )iz )

a(fix,c Jdx

Then, we have the following theorem, which minimizes the limit H(f,c).

Theorem. (minimizing the limit) For each f € F, H(fc) attains its minimum at a unique
point c=c(f). Moreover, c(f) is the unique solution to the equation A(f,c)=0, where A is
strictly increasing function, defined below in (2.6).

Proof. Now,



6 Myoungshic Jhun

b (fix,c)
B . pltix,
H(f, o= [ o (fix,0) gEL ) dx

where #(f:x,c) and 6*(f;x,c) are as in (2.4) and (25).
Since H(f,c)-—>o0 as c—0 or c—>o0 and is continuous in c, it suffices to show that (d/dc)

H(f,c) vanishes only once. But,

=(— -3/2 b 172 pulfix,c)
(0/0c)H (f,c)=(=1/2)c HK]U; B (x) ¢[0(fix,c)]dx

b H
+(5/0) Ky g ALy ¢ ()7 g (x)dx

o(fix,c

for all x and c.
Thus, we have

(3/8c)H(f,c)=c"2% 4 (f,¢)

where
(f.0)=(-1/2) [IKIIf Bx) /2 g (8 Eix. )
4(f,0)= (-1 KIlf B0 ¢ Loy dx (2.6)
+(5/4)c5? K fb gr X €y ()1 g(x)dx
2 a U(f;X,C) x X
But

~ b (fix,c) -
4’ (f,¢)=(5/4)c¥?K, _’;(ﬁ’[ﬁmf,‘(x) a(x)dx

+(5/4)c* K2/ ||K]| )ngb”[%—;:—:zz—))]fx(x)—z a(x)B(x)"Y2dx >0,
So, A(fc) is an increasing function of ¢ for each fixed f. Also A(f,c) converges to A(f, 0)
{ 0 as c tends to 0 and H(f,c) tends to infinity as c tends to infinity.

Therefore, for every f € F, A(f,c) vanishes for exactly one value c=c(f) and, therefore,
the same is true of H'(fc). B

Remark 1. By observing the facts | " (y)}| <1 and #(y)=>#(0) for all y, we can find
¢ (f) and c’(f) such that

40 f,¢7(H)I<0. (2.7)
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and

4 f,ct(£))>0,

Thus, the minimizing value c(f) can be obtained numerically, Two inequalities {(2.7) and
(2.8) provide the starting point for an algorithm in which the function A[f,.] is evaluated
at the midpoints of sequence of smaller and smaller intervals,

Remark 2. The procedures dicussed here can be used in the case of a regression analysis
with a fixed (or a random) independent variable, i.e. Y=r(x)+ Z (or Y=r(X)+2Z) with
Z independent of X and mean zero. In fact, the class F is quite large enough to include
many interesting density functions,

Remark 3. By giving a suitable metric # on the class F of density functions, which
can handle both «(f:x,c) and ¢*(f;x,c) in (2.4) and (2.5), continuity of c(f) with respect
to f € F can be considered. Now, we may have an initial estimate fn,i(x,y) of f(x,y) such
that p(f n,i,f )—> 0 as n—co and then choose an adaptive bandwidth

ha: c(fn,,') l’l-l/s.

The idea is that the adaptive bandwidth h, is not very sensitive to the initial estimate
£ (xy). ‘
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