• 제목/요약/키워드: Algorithm Element

검색결과 2,121건 처리시간 0.03초

유용방향법에 의한 고유진동수 최적화 (Frequency Optimization Using by Feasible Direction Method)

  • 조희근;박영원
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 추계학술대회논문집 - 한국공작기계학회
    • /
    • pp.410-415
    • /
    • 2000
  • In this paper feasible direction method which is one of the optimization method is adopted to natural frequency optimization. In order to find the optimum design of structures that have characteristic natural frequency range, a numerical optimization method to solving eigenvalue problems is a widely used approach. However most cases, it is difficult to decide the accurate thickness and shape of structures that have allowable natural frequency in design constraints. Parallel analysis algorithm involving the feasible direction optimization method and Rayleight-Ritz eigenvalue solving method is developed. The method is implemented by using finite element method. It calculated the optimal thickness and the thickness ratio of each element of 2-D plane element through the parallel algorithm method which satisfy the design constraint of natural frequency.

  • PDF

변요소를 이용한 3차원 적응유한요소법 (3D Adaptive Finite Element Method Using Edge Elements)

  • 류재섭;고창섭;홍선기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.167-170
    • /
    • 2001
  • A three dimensional adaptive finite element analysis algorithm is developed. In the method, the edge elements are used for field analysis, and the local error. In each element is estimated from the fact that the magnetic field should satisfy. The continuity condition at the interface of the two adjacent elements. Based on the estimated error, the elements which are considered to have big error are divided into several elements using the bisection method. The effectiveness of the developed algorithm is proved through numerical examples.

  • PDF

h-분할법에 의한 사각형 유한요소망의 적응적 구성 (An Adaptive Construction of Quadrilateral Finite Elements Using H-Refinement)

  • 채수원
    • 대한기계학회논문집
    • /
    • 제18권11호
    • /
    • pp.2932-2943
    • /
    • 1994
  • An efficient approach to the automatic construction of effective quadrilateral finite element meshes for two-dimensional analysis is presented. The procedure is composed of, firstly, an initial mesh generation and, secondly, an h-version of adaptive refinement based on error analysis. As for an initial mesh generation scheme, a modified looping algorithm has been employed. For the adaptive refinement process, an error indicator obtained by computing the residual error of the equilibrium equations in the energy norm with a relaxation factor has been employed. Examples of mesh generation and self-adaptive mesh improvements are given. These example solutions demonstrate that an effective mesh for a given error tolerance can be obtained in a few steps of the analysis processes.

라플라스 변환과 유한요소법의 결합에 의한 1차원 과도 열전도 문제 해석 (Analysis of One-Dimensional Transient Heat Conduction Problems using Hybrid Laplace Transform/finite Element Method)

  • 송병철;정해덕;이기식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 A
    • /
    • pp.309-311
    • /
    • 1997
  • In this paper, it is proposed that a algorithm which is applicable to the transient analysis by combined use of the Laplace transform and the finite element method. The proposed method removes the time terms using the Laplace transform and then solves the associated equation with the finite element method. The solution which is solved at frequency domain is transformed into time domain by use of the Laplace inversion. To verify proposed algorithm, heat conduction problem is analysed and found a good agreement with analytic solution.

  • PDF

콘크리트 변형률국소화영역의 유한요소모델링 (Finite Element Modeling of Strain Localization Zone in Concrete)

  • 송하원;나웅진
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.53-60
    • /
    • 1997
  • The strain localization of concrete is a phenomenon such that the deformation of concrete is localized in finite region along with softening behavior. The objective of this paper is to develope a consistent algorithm for the finite element modeling of localized zone in the analysis of the strain-localization in concrete. For modeling of the localized zone in concrete under strain localization, a general Drucker-Prager failure criterion which can consider nonlinear strain softening behavior of concrete after peak-stress is introduce. The return-mapping algorithm is used for the integration of the elasto-plastic rate equation and the consistent tangent modulus is derived. Using finite element program implemented with the developed algorithms, strain localization behaviors for the different sizes of concrete specimen under compression are simulated.

  • PDF

Geodesic shape finding of membrane structure with geodesic string by the dynamic relaxation method

  • Lee, K.S.;Han, S.E.
    • Structural Engineering and Mechanics
    • /
    • 제39권1호
    • /
    • pp.93-113
    • /
    • 2011
  • The explicit nonlinear dynamic relaxation method (DRM) is applied to the nonlinear geodesic shape finding analysis by introducing fictional tensioned 'strings' along the desired seams with a three or four-node membrane element. A number of results from the numerical example for the nonlinear geodesic shape finding and patterning analysis are obtained by the proposed method to demonstrate the accuracy and efficiency of the developed method. Therefore, the proposed geodesic shape finding algorithm may improve the applicability of a four-node membrane element to membrane structural engineering and design analysis simultaneously for the shape finding, stress, and patterning analysis.

링크구조를 사용한 유한요소법의 계행렬 압축 기법 (A Compression Method of The System Matrix for The Finite Element Method using Linked List)

  • 정래혁;이복용;정해덕;이기식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 A
    • /
    • pp.15-17
    • /
    • 1995
  • This paper presents compression algorithm of a system matrix for electromagnetic analysis by the finite element method. Generally the solution of the finite element analysis is the more accurate the more number of nodes. The memory of a computer limit to number of nodes. Therefore it is needed the technique of compress the system matrix. This algorithm is useful to handle non-zero-terms that can be generated during the application of boundary condition.

  • PDF

Convergence of the C* family of finite elements and problems associated with forcing continuity of the derivatives at the nodes

  • Bigdeli, B.;Kelly, D.W.
    • Structural Engineering and Mechanics
    • /
    • 제7권6호
    • /
    • pp.561-573
    • /
    • 1999
  • A $C^*$-convergence algorithm for finite element analysis has been proposed by Bigdeli and Kelly (1997) and elements for the first three levels applied to planar elasticity have been defined. The fourth level element for the new family is described in this paper and the rate of convergence for the $C^*$-convergence algorithm is investigated numerically. The new family adds derivatives of displacements as nodal variables and the number of nodes and elements can therefore be kept constant during refinement. A problem exists on interfaces where the derivatives are required to be discontinuous. This problem is addressed for curved boundaries and a procedure is suggested to resolve the excessive interelement continuity which occurs.

공작기계 회전축-베어링 시스템의 유한요소해석 자동화를 위한 툴 개발 (Development of a Tool for Automation of Finite Element Analysis of a Shaft-Bearing System of Machine Tools)

  • 최진우;강기영
    • 한국기계가공학회지
    • /
    • 제18권6호
    • /
    • pp.19-25
    • /
    • 2019
  • We have developed a tool that uses finite element analysis (FEA) to rapidly evaluate a shaft-bearing system of machine tools. We extracted commercial data on suitable clamping units and defined the inner profile of the shaft to avoid needing direct user input to define the profile. We use a splitting algorithm to convert the shaft into beam elements with two diameters and length. To validate the tool, we used it to design and evaluate a shaft-bearing system and found that our tool automated the construction of an FE system model in a commercial FEA package as well as the static stiffness evaluation; both tasks were completed in seconds, demonstrating a significant reduction from the minutes normally required to complete these tasks manually.

후판 압연에서 신경망 알고리즘을 이용한 스키 예측 (Prediction of Ski-Effect in Plate Rolling Process using Neural Network Algorithm)

  • 박준수;나두현;정석환;허승민;최해진;이영석
    • 소성∙가공
    • /
    • 제22권5호
    • /
    • pp.250-257
    • /
    • 2013
  • A series of finite element analyses of the rolling process were performed and a neural network algorithm was employed to calculate the amount of ski-effect for an arbitrary thickness of incoming material in the roll gap. Pilot hot plate rolling tests were also conducted to verify the usefulness of the finite element analyzes conducted in this study. In these experiments, plates with thicknesses varying from 25 to 65 mm were tested. In addition, a number of rolling reductions of up to 31% were examined. Finally, a number of circumferential upper and lower rolls were investigated. Experimental validations demonstrated that the neural network algorithm predicted the proper amount of ski when rolling conditions(material thickness, reduction ratio, roll velocity differential) changed arbitrarily.