• Title/Summary/Keyword: Algorithm Element

Search Result 2,117, Processing Time 0.032 seconds

Searching Algorithm for Finite Element Analysis of 2-D Contact Problems (2차원 접촉문제의 유한요소 해석을 위한 탐색알고리즘)

  • 장동환;최호준;고병두;조승한;황병복
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.148-158
    • /
    • 2003
  • In this paper, efficient and accurate contact search algorithm is proposed for the contact problems by the finite element method. A slave node and a maser contact segment is defined using the side of a finite element on the contact surface. The specific goal is to develop techniques of reducing the nonsmoothness of the contact interactions arising from the finite element discretization of the contact surface. Contact detection is accomplished by monitoring the territory of the slave nodes throughout the calculation for possible penetration of a master surface. To establish the validity of the proposed algorithm, some different process and geometries examples were simulated. Efforts are focused on the error rate that is based on the penetrated area through the simulations fur large deformation with contact surface between deformable bodies. A proposed algorithm offers improvements in contact detection from the simulation results.

Vector algorithm for layered reinforced concrete shell element stiffness matrix

  • Min, Chang Shik;Gupta, Ajaya Kumar
    • Structural Engineering and Mechanics
    • /
    • v.3 no.2
    • /
    • pp.173-183
    • /
    • 1995
  • A new vector algorithm is presented for computing the stiffness matrices of layered reinforced concrete shell elements. Each element stiffness matrix is represented in terms of three vector arrays of lengths 78, 96 and 36, respectively. One element stiffness matrix is calculated at a time without interruption in the vector calculations for the uncracked or cracked elements. It is shown that the present algorithm is 1.1 to 7.3 times more efficient then a previous algorithm developed by us on a Cray Y-MP supercomputer.

A Study on Constructing the Inverse Element Generator over GF(3m)

  • Park, Chun-Myoung
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.3
    • /
    • pp.317-322
    • /
    • 2010
  • This paper presents an algorithm generating inverse element over finite fields GF($3^m$), and constructing method of inverse element generator based on inverse element generating algorithm. An inverse computing method of an element over GF($3^m$) which corresponds to a polynomial over GF($3^m$) with order less than equal to m-1. Here, the computation is based on multiplication, square and cube method derived from the mathematics properties over finite fields.

Crack analysis of reinforced concrete members with and without crack queuing algorithm

  • Ng, P.L.;Ma, F.J.;Kwan, A.K.H.
    • Structural Engineering and Mechanics
    • /
    • v.70 no.1
    • /
    • pp.43-54
    • /
    • 2019
  • Due to various numerical problems, crack analysis of reinforced concrete members using the finite element method is confronting with substantial difficulties, rendering the prediction of crack patterns and crack widths a formidable task. The root cause is that the conventional analysis methods are not capable of tracking the crack sequence and accounting for the stress relief and re-distribution during cracking. To address this deficiency, the crack queuing algorithm has been proposed. Basically, at each load increment, iterations are carried out and within each iteration step, only the most critical concrete element is allowed to crack and the stress re-distribution is captured in subsequent iteration by re-formulating the cracked concrete element and re-analysing the whole concrete structure. To demonstrate the effectiveness of the crack queuing algorithm, crack analysis of concrete members tested in the literature is performed with and without the crack queuing algorithm incorporated.

A Study on the Inverse Element Generation Algorithm over $GF(3^m)$ (유한체 $GF(3^m)$상에서 역원생성 알고리즘에 관한 연구)

  • Park, Chun-Myoung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.768-771
    • /
    • 2008
  • This paper presents an algorithm for generating inverse element over finite fields $GF(3^m)$, and constructing method of inverse element generator based on inverse element generating algorithm. The method need to compute inverse of an element eve. $GF(3^m)$ which corresponds to a polynomial eve. $GF(3^m)$ with order less than equal to m-1. Here, the computation is based on multiplication, square and cube method derived from the mathematics properties over finite fields.

  • PDF

Geodesic Shape Finding Algorithm for the Pattern Generation of Tension Membrane Structures (막구조물의 재단도를 위한 측지선 형상해석 알고리즘)

  • Lee, Kyung-Soo;Han, Sang-Eul
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.1
    • /
    • pp.33-42
    • /
    • 2010
  • Patterning with a geodesic line is essential for economical or efficient usage of membrane materialsin fabric tension membrane structural engineering and analysis. The numerical algorithm to determine the geodesic line for membrane structures is generally classified into two. The first algorithm finds a non-linear shape using a fictitious geodesic element with an initial pre-stress, and the other algorithm is the geodesic line cutting or searching algorithm for arbitrarily curved 3D surface shapes. These two algorithms are still being used only for the three-node plane stress membrane element, and not for the four-node element. The lack of a numerical algorithm for geodesic lines with four-node membrane elements is the main reason for the infrequent use of the four-node membrane element in membrane structural engineering and design. In this paper, a modified numerical algorithm is proposed for the generation of a geodesic line that can be applied to three- or four-node elements at the same time. The explicit non-linear static Dynamic Relaxation Method (DRM) was applied to the non-linear geodesic shape-finding analysis by introducing the fictitiously tensioned 'strings' along the desired seams with the three- or four-node membrane element. The proposed algorithm was used for the numerical example for the non-linear geodesic shape-finding and patterning analysis to demonstrate the accuracy and efficiency, and thus, the potential, of the algorithm. The proposed geodesic shape-finding algorithm may improve the applicability of the four-node membrane element for membrane structural engineering and design analysis simultaneously in terms of the shape-finding analysis, the stress analysis, and the patterning analysis.

An Efficient Algorithm for Computing Multiplicative Inverses in GF($2^m$) Using Optimal Normal Bases (최적 정규기저를 이용한 효율적인 역수연산 알고리즘에 관한 연구)

  • 윤석웅;유형선
    • The Journal of Society for e-Business Studies
    • /
    • v.8 no.1
    • /
    • pp.113-119
    • /
    • 2003
  • This paper proposes a new multiplicative inverse algorithm for the Galois field GF (2/sup m/) whose elements are represented by optimal normal basis type Ⅱ. One advantage of the normal basis is that the squaring of an element is computed by a cyclic shift of the binary representation. A normal basis element is always possible to rewrite canonical basis form. The proposed algorithm combines normal basis and canonical basis. The new algorithm is more suitable for implementation than conventional algorithm.

  • PDF

Vector algorithm for reinforced concrete shell element stiffness matrix

  • Min, Chang Shik;Gupta, Ajaya Kumar
    • Structural Engineering and Mechanics
    • /
    • v.2 no.2
    • /
    • pp.125-139
    • /
    • 1994
  • A vector algorithm for calculating the stiffness matrices of reinforced concrete shell elements is presented. The algorithm is based on establishing vector lengths equal to the number of elements. The computational efficiency of the proposed algorithm is assessed on a Cray Y-MP supercomputer. It is shown that the vector algorithm achieves scalar-to-vector speedup of 1.7 to 7.6 on three moderate sized inelastic problems.

An Efficient Contact Detection Algorithm for Contact Problems with the Boundary Element Method (경계요소법을 이용한 접촉해석의 효율적인 접촉면 검출기법)

  • Kim, Moon-Kyum;Yun, Ik-Jung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.5
    • /
    • pp.439-444
    • /
    • 2009
  • This paper presents an efficient contact detection algorithm for the plane elastostatic contact problem of the boundary element method(BEM). The data structures of the boundary element method are dissected to develop an efficient contact detection algorithm. This algorithm is consists of three parts as global searching, local searching and contact relation setting to reflect the corner node problem. Contact master and slave type elements are used in global searching step and quad-tree is selected as the spatial decomposition method in local searching step. To set up contact relation equations, global contact searching is conducted at node level and local searching is performed at element level. To verify the efficiency of the proposed contact detection algorithm of BEM, numerical example is presented.

CAE Solid Element Mesh Generation from 3D Laser Scanned Surface Point Coordinates

  • Jarng S.S.;Yang H.J.;Lee J.H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.3
    • /
    • pp.162-167
    • /
    • 2005
  • A 3D solid element mesh generation algorithm was newly developed. 3D surface points of global rectangular coordinates were supplied by a 3D laser scanner. The algorithm is strait forward and simple but it generates hexahedral solid elements. Then, the surface rectangular elements were generated from the solid elements. The key of the algorithm is elimination of unnecessary elements and 3D boundary surface fitting using given 3D surface point data.