• Title/Summary/Keyword: Algebraic connectivity

Search Result 8, Processing Time 0.017 seconds

Energy-Connectivity Tradeoff through Topology Control in Wireless Ad Hoc Networks

  • Xu, Mengmeng;Yang, Qinghai;Kwak, Kyung Sup
    • ETRI Journal
    • /
    • v.39 no.1
    • /
    • pp.30-40
    • /
    • 2017
  • In this study, we investigate topology control as a means of obtaining the best possible compromise between the conflicting requirements of reducing energy consumption and improving network connectivity. A topology design algorithm capable of producing network topologies that minimize energy consumption under a minimum-connectivity constraint is presented. To this end, we define a new topology metric, called connectivity efficiency, which is a function of both algebraic connectivity and the transmit power level. Based on this metric, links that require a high transmit power but only contribute to a small fraction of the network connectivity are chosen to be removed. A connectivity-efficiency-based topology control (CETC) algorithm then assigns a transmit power level to each node. The network topology derived by the proposed CETC heuristic algorithm is shown to attain a better tradeoff between energy consumption and network connectivity than existing algorithms. Simulation results demonstrate the efficiency of the CECT algorithm.

LQ Inverse Optimal Consensus Protocol for Continuous-Time Multi-Agent Systems and Its Application to Formation Control (연속시간 다개체 시스템에 대한 LQ-역최적 상태일치 프로토콜 및 군집제어 응용)

  • Lee, Jae Young;Choi, Yoon Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.5
    • /
    • pp.526-532
    • /
    • 2014
  • In this paper, we present and analyze a LQ (Linear Quadratic) inverse optimal state-consensus protocol for continuous-time multi-agent systems with undirected graph topology. By Lyapunov analysis of the state-consensus error dynamics, we show the sufficient conditions on the algebraic connectivity of the graph to guarantee LQ inverse optimality and closed-loop stability. A more relaxed stability condition is also provided in terms of the algebraic connectivity. Finally, a formation control protocol for multiple mobile robots is proposed based on the target LQ inverse optimal consensus protocol, and the simulation results are provided to verify the performance of the proposed LQ inverse formation control method.

Cooperation with Ground and Arieal Vehicles for Multiple Tasks: Decentralized Task Assignment and Graph Connectivity Control (지상 로봇의 분산형 임무할당과 무인기의 네트워크 연결성 추정 및 제어를 통한 협업)

  • Moon, Sung-Won;Kim, Hyoun-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.218-223
    • /
    • 2012
  • Maintenance and improvement of the graph connectivity is very important for decentralized multi-agent systems. Although the CBBA (Consensus-Based Bundle Algorithm) guarantees suboptimal performance and bounded convergence time, it is only valid for connected graphs. In this study, we apply a decentralized estimation procedure that allows each agent to track the algebraic connectivity of a time-varying graph. Based on this estimation, we design a decentralized gradient controller to maintain the graph connectivity while agents are traveling to perform assigned tasks. Simulation result for fully-actuated first-order agents that move in a 2-D plane are presented.

A case study on students' expressions in solving the limitations of functions problems (극한 문제의 풀이 과정에서 대수적 절차와 그래프를 이용한 방식의 연결에 대한 사례연구)

  • Lee, Dong Gun
    • The Mathematical Education
    • /
    • v.58 no.1
    • /
    • pp.79-99
    • /
    • 2019
  • This study is a study to collect information about 'Limitations of functions' related learning. Especially, this study was conducted on three students who can find answers by algebraic procedure in the process of extreme problem solving. Students have had the experience of converting from their algebraic procedures to graphical expressions. This shows how they reflect on their algebraic procedures. This study is a study that observes these parts. To accomplish this, twelfth were teaching experiment in three high school students. And we analyzed the contents related to the research topic of this study. Through this, students showed the difference of expressions in the method of finding limits by using algebraic interpretation methods and graphs. In addition, we examined the connectivity of the limitations of functions problem solving process of functions using algebraic procedures and graphs in the process of converting algebraic expressions to graph expressions. This study is a study of how students construct limit concepts. As in this study, it is meaningful to accumulate practical information about students' limit conceptual composition. We hope that this study will help students to study limit concept development process for students who have no limit learning experience in the future.

A study on the teaching of algebraic structures in school algebra (학교수학에서의 대수적 구조 지도에 대한 소고)

  • Kim, Sung-Joon
    • Journal of the Korean School Mathematics Society
    • /
    • v.8 no.3
    • /
    • pp.367-382
    • /
    • 2005
  • In this paper, we deal with various contents relating to the group concept in school mathematics and teaching of algebraic structures indirectly by combining these contents. First, we consider structure of knowledge based on Bruner, and apply these discussions to the teaching of algebraic structure in school algebra. As a result of these analysis, we can verify that the essence of algebraic structure is group concept. So we investigate the previous researches about group concept: Piaget, Freudenthal, Dubinsky. In our school, the contents relating to the group concept have been taught from elementary level indirectly. Tn elementary school, the commutative law and associative law is implicitly taught in the number contexts. And in middle school, various linear equations are taught by the properties of equality which include group concept. But these algebraic contents is not related to the high school. Though we deal with identity and inverse in the binary operations in high school mathematics, we don't relate this algebraic topics with the previous learned contents. In this paper, we discussed algebraic structure focusing to the group concept to obtain a connectivity among school algebra. In conclusion, the group concept can take role in relating these algebraic contents and teaching the algebraic structures in school algebra.

  • PDF

Motion planning with planar geometric models

  • Kim, Myung-Doo;Moon, Sang-Ryong;Lee, Kwan-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.996-1003
    • /
    • 1990
  • We present algebraic algorithms for collision-avoidance robot motion planning problems with planar geometric models. By decomposing the collision-free space into horizontal vertex visibility cells and connecting these cells into a connectivity graph, we represent the global topological structure of collision-free space. Using the C-space obstacle boundaries and this connectivity graph we generate exact (non-heuristic) compliant and gross motion paths of planar curved objects moving with a fixed orientation amidst similar obstacles. The gross motion planning algorithm is further extended (though using approximations) to the case of objects moving with both translational and rotational degrees of freedom by taking slices of the overall orientations into finite segments.

  • PDF

Computational Thinking based Mathematical Program for Free Semester System

  • Lee, Ji Yoon;Cho, Han Hyuk
    • Research in Mathematical Education
    • /
    • v.18 no.4
    • /
    • pp.273-288
    • /
    • 2014
  • In recent years, coding education has been globally emphasized and the Free Semester System will be executed to the public schools in Korea from 2016. With the introduction of the Free Semester System and the rising demand of Computational Thinking (CT) capacity, this research aims to design 'learning environment' in which learners can design and construct mathematical objects through computers and print them out through 3D printers. Furthermore, it will design learning mathematics by constructing the figurate number patterns from 'soma cubes' in the playing context and connecting those to algebraic and combinatorial patterns, which will allow students to experience mathematical connectivity. It is expected that the activities of designing figurate number patterns suggested in this research will not only strengthen CT capacity in relation to mathematical thinking but also serve as a meaningful program for the Free Semester System in terms of career experience as 3D printers can be widely used.

ON THE LOCATION OF EIGENVALUES OF REAL CONSTANT ROW-SUM MATRICES

  • Hall, Frank J.;Marsli, Rachid
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1691-1701
    • /
    • 2018
  • New inclusion sets are obtained for the eigenvalues of real matrices for which the all 1's vector is an eigenvector, i.e., the constant row-sum real matrices. A number of examples are provided. This paper builds upon the work of the authors in [7]. The results of this paper are in terms of $Ger{\check{s}}gorin$ discs of the second type. An application of the main theorem to bounding the algebraic connectivity of connected simple graphs is obtained.