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ON THE LOCATION OF EIGENVALUES OF REAL

CONSTANT ROW-SUM MATRICES

Frank J. Hall and Rachid Marsli

Abstract. New inclusion sets are obtained for the eigenvalues of real

matrices for which the all 1’s vector is an eigenvector, i.e., the constant
row-sum real matrices. A number of examples are provided. This paper

builds upon the work of the authors in [7]. The results of this paper
are in terms of Geršgorin discs of the second type. An application of the

main theorem to bounding the algebraic connectivity of connected simple

graphs is obtained.

1. Introduction

S. Geršgorin’s 1931 article [2] is an important and often cited work on the
location of the eigenvalues of n×n matrices. A main part of Geršgorin’s result
is that the eigenvalues of an n×n complex matrix are contained in the union of
the Geršgorin discs in the plane. The concept of Geršgorin disc of the second
type has been recently introduced in our paper [7]. It is defined as follows:

Definition 1.1. Let A = [aij ] be an n×n real matrix, and let xi1 ≥ · · · ≥ xin
be a rearrangement in non-increasing order of ai1, . . . , ai,i−1, 0, ai,i+1, . . . , ain
for i = 1, . . . , n. We call a Geršgorin disc of A of the first type a usual Geršgorin
disc, while a Geršgorin disc of the second type D̂(aii , r̂i) of A satisfies the
following conditions:

(1) Its center aii is the diagonal element from the ith row of A.
(2) Its radius:

(a) r̂i =

n−1
2∑

j=1

xij −
n∑

j=n+3
2

xij , if n is odd.

(b) r̂i =

n
2∑

j=1

xij −
n∑

j=n
2 +1

xij , if n is even.
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The following lemma was also fundamental to our analysis in [7]. The reason
for the minimum as stated is a familiar fact from statistics: the median is the
statistic that minimizes the sum of absolute deviations; see for example [9].

Lemma 1.2. Consider the real function of the real variable f(x)=
∑n

i=1 |x−βi|,
with β1 ≥ · · · ≥ βn, not necessarily distinct n real numbers.

(1) If n is odd, then minx∈R f(x) =
(
β1 + · · ·+ βn−1

2

)
−
(
βn+3

2
+ · · ·+ βn

)
.

This minimum is reached when x = βn+1
2

.

(2) If n is even, then minx∈R f(x) =
(
β1 + · · ·+ βn

2

)
−
(
βn

2 +1 + · · ·+ βn
)
.

This takes place for every x ∈ [βn
2
, βn

2 +1] if βn
2
6= βn

2 +1 and only for
x = βn

2
if βn

2
= βn

2 +1.

Based on the above lemma and definition we obtained the following result in
[7]. Since we refer to the proof of this theorem later, we re-produce it here. As
in our previous work, we denote the all 1’s column vector with n components
by e.

Theorem 1.3. Let A = [aij ] be a n × n real matrix and suppose that λ is an
eigenvalue of A associated with an eigenvector orthogonal to the all 1’s vector
e. Then λ is in a Geršgorin disc of the second type of A.

Proof. Suppose that λ is associated with the eigenvector v = (v1, . . . , vn)T

and v∗e = 0, that is
∑
vi = 0 . Without loss of generality, suppose that v1 is

the largest, in absolute value, among the elements of v. Then Av = λv implies

(λ− a11)v1 =

n∑
j=2

a1j vj = (0− x)v1 +

n∑
j=2

(a1j − x)vj , since

n∑
j=1

xvj = 0.

Hence,

|λ− a11||v1| = |(0− x)v1 +

n∑
j=2

(a1j − x)vj | ≤ |0− x| |v1|+
n∑

j=2

|(a1j − x)||vj |

≤
(
|0− x|+

n∑
j=2

|(a1j − x )|
)
|v1|.

That is,

|λ− a11| ≤ min
x∈R

( n∑
j=2

|a1j − x|+ |0− x|
)
.

Therefore, the theorem follows by the use of Definition 1.1 and Lemma 1.2. �

In our current work, we apply this result to stochastic matrices in particu-
lar, and more generally to all real matrices for which the all 1’s vector is an
eigenvector, i.e., the constant row-sum real matrices. As such we make some
further definitions.
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Definition 1.4. A real n× n matrix for which e is an eigenvector is called an
e-matrix. If A is an e-matrix, and λt is the eigenvalue of A associated with e,
then we call λt the trivial eigenvalue of A. If λ is an eigenvalue of A such that
λ 6= λt, then we call λ a non-trivial eigenvalue of A.

Some well-known types of matrices are e-matrices, such as stochastic and
Laplacian matrices.

Definition 1.5. A Geršgorin region of the second type of a real matrix A is
the union of the Geršgorin discs of the second type of A. We denote this region
by G2(A). We call the usual Geršgorin region, the Geršgorin region of the first
type.

In [8] we obtained a new upper bound for eigenvalues of real constant row-
sum matrices (which we are now calling e-matrices); we also made comparisons
to some previously known bounds. In this present paper, the emphasis is on
the localization of eigenvalues of e-matrices; the location is done with Geršgorin
discs of the second type. We mention two interesting recent articles on local-
ization of stochastic matrices in particular, namely [1] and [4].

2. Main results

The following result follows from the “principle of biorthogonality”, see [3,
Theorem 1.4.7(a)].

Lemma 2.1. Suppose A is an n× n e-matrix, λ is a non-trivial eigenvalue of
A, and v is any left eigenvector of A associated with λ. Then v is orthogonal
to e.

Now we state our first main theorem.

Theorem 2.2. If A is an n× n e-matrix, then all the non-trivial eigenvalues
of A are in the Geršgorin region of the second type of AT . This applies in
particular to stochastic matrices. Also, if A is a doubly stochastic matrix, then
all the non-trivial eigenvalues of A are in the intersection of the Geršgorin
regions of the second type of A and AT .

Proof. Let λ be a non-trivial eigenvalue of A and v be a left eigenvector of A
associated with λ. Then v∗A = λv∗, so that AT v = λ̄v. By Lemma 2.1, v is
orthogonal to e. Hence, by Theorem 1.3, λ̄ is in a Geršgorin disc of the second
type of AT . Since A is a real matrix, the center of each such disc is on the
real-axis. Thus, it is also the case that λ is in that same Geršgorin disc, so that
λ is in the Geršgorin region of the second type of AT . The statements about
stochastic matrices should be clear. �

Example 2.3. Let

A =

3 2 5
5 2 3
4 2 4

 .
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The Geršgorin region of the first type of AT , G1(AT ), is the union of the 3
discs D(3, 9)∪D(2, 4)∪D(4, 8). The Geršgorin region of the second type of AT ,

G2(AT ), is the union D̂(3, 5)∪ D̂(2, 2)∪ D̂(4, 5). Observe that for this matrix,
G2(AT ) is significantly smaller thanG1(AT ). By definition, G2(AT ) ⊆ G1(AT ).

Corollary 2.4. Let A be an n × n e-matrix, with trivial eigenvalue different
than 0. If the number 0 is outside of the Geršgorin region of the second type of
AT , then A is nonsingular.

Example 2.5. Let

A =

0.5 0.3 0.2
0.2 0.6 0.2
0.1 0.2 0.7

 .
Then it can be seen that A is such a nonsingular matrix.

Recently we have proved in [5] that if an eigenvalue has geometric multi-
plicity k, then it is in the intersection of at least k Geršgorin discs of the first
type. We also obtained a result concerning the rank of matrices in [6]: if the
number 0 is outside of k Geršgorin discs of the first type of an n×n matrix A,
then the rank of this matrix is greater than or equal to n − k. The key idea
behind these results is the following lemma which can be found in [5].

Lemma 2.6. Let S be a k-dimensional subspace of Cn. There is a basis
{v1, v2, . . . , vk} of S with the following property: for each i = 1, 2, . . . , k, there
is a distinct integer pi, with 1 ≤ pi ≤ n and pi 6= pj for i 6= j, such that a
largest modulus entry of each vi is in position pi.

Theorem 2.7. Let A be an e-matrix. If λ is a non-trivial eigenvalue of A with
geometric multiplicity k, then λ is in at least k Geršgorin discs of the second
type of AT .

Proof. If λ has geometric multiplicity k, then the left eigenspace of λ has dimen-
sion k, and by Lemma 2.1 it is orthogonal to e. According to Lemma 2.6, this
subspace is spanned by k linearly independent left eigenvectors associated with
λ such that these eigenvectors have largest moduli entries in different positions.
Denote these left eigenvectors of λ by vi = (vi1, . . . , vin)T for i = 1, . . . , k , and
without loss of generality, suppose that the largest modulus of vi is vii. Taking
into account that the left eigenvectors of A are right eigenvectors of AT and
using the same reasoning as in the proof of Theorem 2.2, we construct from
the ith row of AT , a Geršgorin disc of the second type that contains λ (see also
the proof of Theorem 1.3). Hence λ belongs to the intersection of at least k
Geršgorin discs of the second type constructed from k different rows of AT . �

Corollary 2.8. Let A be an e-matrix. If no more than k Geršgorin discs of
the second type of AT are connected, then no non-trivial eigenvalue of A has
geometric multiplicity larger than k.
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Corollary 2.9. Let A be an e-matrix with trivial eigenvalue different than 0.
If 0 is outside k Geršgorin discs of the second type of AT , then the rank of A
is greater than or equal to k.

Proof. If 0 is outside k Geršgorin discs of the second type of AT , then it
belongs to at most n− k Geršgorin discs of the second type of AT . Hence, if 0
is an eigenvalue of A, then according to Theorem 2.7, it cannot have geometric
multiplicity greater than n − k. In other words, the rank of A cannot be less
than k. �

If A is an e-matrix, and λt is its trivial eigenvalue, then clearly λt is on
the boundary of every Geršgorin disc of the first type of A. This fact implies
that the Geršgorin region of the first type of A is connected. The question that
arises now is the following: what about the Geršgorin region of the second type
of AT , is it also connected? We will discuss this question in the next section.
Now let’s emphasize the geometric multiplicity of λt and its relationship with
the Geršgorin region of the second type of A. If λt has geometric multiplicity
k ≥ 2, we can use the following result that can be found in [7].

Lemma 2.10. Let A be a real matrix and let λ be an eigenvalue of A with
geometric multiplicity k ≥ 2. Then λ is in the intersection of at least k − 1
Geršgorin discs of the second type of A and at least one Geršgorin disc of the
first type of the matrix Ck(A), all the discs being constructed from different
rows.

The matrix Ck(A) is constructed from A by replacing in every row of A,
k − 1 smallest off-diagonal entries in absolute value by 0.

Corollary 2.11. Let A be an e-matrix and suppose that λt, its trivial eigen-
value, has geometric multiplicity k ≥ 2. Then λt is in the intersection of at
least k − 1 discs of the second type of A.

The above corollary has a strong connection with the number of zeros in
some rows of A. This is because λt as we have mentioned before is on the
boundary of every Geršgorin discs of the first type of A, and since it has
geometric multiplicity k then it must be in at least k − 1 discs of second type
of A according to Corollary 2.11. We know also that every Geršgorin disc of
the second type is a subset of a Geršgorin disc of the first type constructed
from the same row of A. All these facts together imply that k − 1 discs of the
second type of A must be identical, respectively, to the Geršgorin disc of the
first type of A constructed from the same row. When we look at how these
k − 1 discs are constructed, we will deduce for the case of stochastic matrices
that the corresponding rows must have the following properties.

Theorem 2.12. Let A be an n×n stochastic matrix. Suppose that λt = 1, its
trivial eigenvalue, has geometric multiplicity k ≥ 2.

- If n is odd, then there are at least k − 1 rows of A, each one of which has
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at least n−1
2 off-diagonal entries equal to 0.

- If n is even, then there are at least k− 1 rows of A, each one of which has
at least n

2 − 1 off-diagonal entries equal to 0.

Example 2.13. Suppose that A is a 100 × 100 stochastic matrix. For the
eigenvalue 1 to have geometric multiplicity 3, there must be at least two rows
of A, each of which has at least 49 zero off-diagonal entries.

Application of Theorem 2.2 to algebraic connectivity of connected
graphs

Let A = [aij ] be an e-matrix and let λ be a non-trivial eigenvalue of A.

Theorem 2.2 implies that λ ∈
⋃n

i=1 D̂i(aii, ri), where D̂i(aii, ri) is the Geršgorin
disc of the second type having center aii, radius ri and constructed from the
ith column of A. If in addition, A is symmetric, then this implies that there
exists some j ∈ {1, . . . , n} such that

ajj − rj ≤ λ ≤ ajj + rj

which leads to:

Corollary 2.14. Let A = [aij ] be a symmetric e-matrix and let λ be a non-
trivial eigenvalue of A. Then

min
1≤i≤n

{aii − ri} ≤ λ ≤ max
1≤i≤n

{aii + ri},

where ri is the radius of the Geršgorin disc of the second type constructed from
the ith column of A.

Now, let L = [lij ] be the Laplacian of a connected simple graph G. Then
L is a symmetric e-matrix. The trivial eigenvalue of L is 0 and its algebraic
connectivity µ is strictly greater than 0 since G is connected. The algebraic
connectivity µ is also the smallest non-trivial eigenvalue of L, so it is the closest
non-trivial eigenvalue of L to the lower bound given in Corollary 2.14. That is,

µ ≥ min
1≤i≤n

{lii − ri},

where ri is the radius of the Geršgorin disc of the second type constructed
from the ith column of L. Next we try to find some explicit forms of the above
formula. Suppose that the connected simple graph G has vertices v1, . . . , vn
with degrees d1, . . . , dn, respectively. Then the entries of L are

lij =


di, if i = j

−1, if vivj ∈ E
0, if vivj 6∈ E.

If n is even and di >
n
2 , then

ri =
[
0 + · · ·+ 0

]
+

(di−n
2 ) terms︷ ︸︸ ︷[

(−1) + · · ·+ (−1)
]
−

n
2 terms︷ ︸︸ ︷[

(−1) + · · ·+ (−1)
]
.
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That is ri = n−di. It follows that, if λ is a non-trivial eigenvalue of L that lies
within the Geršgorin disc of the second type constructed from the ith column,
then λ ≥ 2di − n.

If n is odd and di ≥ n+1
2 , then

ri =
[
0 + · · ·+ 0

]
+

(di−n+1
2 ) terms︷ ︸︸ ︷[

(−1) + · · ·+ (−1)
]
−

n−1
2 terms︷ ︸︸ ︷[

(−1) + · · ·+ (−1)
]
.

That is, again ri = n − di. Therefore, if λ is a non-trivial eigenvalue of L
that lies within the Geršgorin disc of the second type constructed from the ith

column, then λ ≥ 2di − n.
In the case where n is even and di ≤ n

2 and in the case where n is odd

and di ≤ n−1
2 , the lower bound given by Corollary 2.14 is equal to 0, therefore

trivial.
In view of the above discussion we have the following result.

Theorem 2.15. Let G be a simple connected graph of order n such that every
vertex is connected to a number of vertices no less than n

2 + 1 if n is even, or

no less than n+1
2 if n is odd. Let µ be the algebraic connectivity of G. Then

µ ≥ 2d− n,

where d is the minimum among the degrees of the vertices of G.

Example 2.16. Consider the 10× 10 Laplacian matrix

L =



7 −1 −1 0 −1 0 −1 −1 −1 −1
−1 8 0 −1 −1 −1 −1 −1 −1 −1
−1 0 7 −1 −1 −1 0 −1 −1 −1

0 −1 −1 8 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 9 −1 −1 −1 −1 −1

0 −1 −1 −1 −1 8 −1 −1 −1 −1
−1 −1 0 −1 −1 −1 7 −1 0 −1
−1 −1 −1 −1 −1 −1 −1 9 −1 −1
−1 −1 −1 −1 −1 −1 0 −1 7 0
−1 −1 −1 −1 −1 −1 −1 −1 0 8


.

The algebraic connectivity of L is µ = 6.382 and the lower bound given by
Theorem 2.15 is 4.

Remark 2.17. This paper is more about the improvement of the location of
eigenvalues of e-matrices in general and stochastic matrices in particular, us-
ing the new concept of Geršgorin discs of the second type introduced in [7].
Therefore, it does not study in depth the algebraic connectivity, and neither
the applications of Theorem 2.15 nor its comparison to other existing results
about the bounds of algebraic connectivity.



1698 F. J. HALL AND R. MARSLI

3. Some properties of the Geršgorin region of the second type of
stochastic matrices

Theorem 3.1. The Geršgorin region of the second type of a 2 × 2 stochastic
matrix is connected.

Proof. Every 2× 2 stochastic matrix S can be written in the form

S =

[
a 1− a

1− b b

]
,

where a and b are real numbers such that 0 ≤ a ≤ 1 and 0 ≤ b ≤ 1. The
Geršgorin discs of the second type of S are D1(a, 1− a) and D2(b, 1− b).
We have

[
(1−a)+(1−b)

]2
−(|a−b|)2 = 2−2(a+b)+2ab = 2(1−a)(1−b) ≥ 0.

Hence (1− a) + (1− b) ≥ |a− b| , which means that the discs D1 and D2 are
connected. �

For n×n stochastic matrices with n ≥ 3, it may happen that the Geršgorin
region of the second type of the transpose consists of disjoint parts as in the
following examples.

Example 3.2. Let

S1 =
1

20

14 4 2
4 14 2
9 9 2



Figure 1. G2(ST
1 )

and S2 = 1
100


65 14 13 8
10 72 10 8
10 10 70 10
25 30 29 16

 .
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Figure 2. G2(ST
2 )

The eigenvalues of S1 are λt = 1, λ2 = 0.5 and λ2 = 0. The eigenvalues of S2

are λt = 1, λ2 ≈ 0.61, λ3 ≈ 0.55 and λ4 ≈ 0.07. The non-trivial eigenvalues of
each of these two matrices are contained in the Geršgorin region of the second
type of its transpose. Each one of these two regions is made up of two disjoint
parts, as it can be seen in Figure 1 and Figure 2.

One can see also that for both S1 and S2, the trivial eigenvalue λt = 1 is in
some discs of the second type of ST

1 and ST
2 , but this is not always true in the

general case, as it is shown by the example below.

Example 3.3. Let

S3 =
1

10

1 4 5
4 2 4
4 3 3

 .
The trivial eigenvalue λt = 1 6∈ G2(S3) = D̂(0.1, 0.4)∪ D̂(0.2, 0.4)∪ D̂(0.3, 0.5).

There is a connection between the Geršgorin region of the second type and
the primitivity of stochastic matrices, as stated by the following result.

Theorem 3.4. Let S be an n× n irreducible stochastic matrix. If 1 is outside
the Geršgorin region of the second type of ST , then S is primitive.

Proof. If 1 is outside the Geršgorin region of the second type of ST , then all the
Geršgorin discs of the second type of ST are strictly included inside the circle
having center the origin and radius equal to 1. Therefore, by Theorem 2.2,
every non-trivial eigenvalue λ of S is such that |λ| < 1. Since S is irreducible,
it follows that S is primitive. �

Example 3.5. Let

S4 =
1

10


0 5 5 0
7 0 0 3
4 3 0 3
6 0 4 0

 .
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Despite the fact that a significant number of entries are zero, this matrix is
primitive by Theorem 3.4.

We can also remark that when looking at the Geršgorin region of the second
type of the matrices ST

1 and ST
2 from Example 3.2, there is an eigenvalue in the

isolated disk. Let us recall the second part of the original Geršgorin theorem
[2], which states that if R1, the union of k of the n Geršgorin discs of the first
type of a matrix A, is disjoint from the union of the remaining n−k discs, then
R1 contains exactly k eigenvalues of A counting the algebraic multiplicities. In
an analogous way, we state the following open question.

Open Question 3.6. Prove or disapprove the following proposition. Let S be
an n×n stochastic matrix. If k Geršgorin discs of the second type constructed
from k different columns, form a region R1 that is disjoint from the remain-
ing (n − k) discs, then either k or (k − 1) eigenvalues, counting the algebraic
multiplicities, are included in the region R1.

So much has been written on Geršgorin theorem and its application. How-
ever, as we know, there is no algebraic proof of the second part of this theorem.
Instead, there is a clever analytical proof based on the well known fact that
the eigenvalues of every complex matrix are continuous functions of its entries.
Unfortunately, this analytical proof seems not to work directly for solving the
above open question, in case it has an affirmative answer.
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