• 제목/요약/키워드: Algebraic Knowledge

검색결과 37건 처리시간 0.016초

방정식의 해법에 관한 소고

  • 이대현
    • 한국수학사학회지
    • /
    • 제17권1호
    • /
    • pp.61-68
    • /
    • 2004
  • This paper aims at investigating the algebraic solution of cubic and quartic equation and eliciting the didactical meanings of them. First, I examine the event which relates to the equation in the history of mathematics and investigate the algebraic solution of cubic and quartic equation. And then I elicit the didactical suggestions which are required of teachers and students when they investigate the algebraic solution of cubic and quartic equation. In general, the investigation of these solutions is the valuable task which requires the algebraic intuition and technique for students and certificates expert knowledge for teachers.

  • PDF

다항식의 해법에 대한 수학교사의 대수 내용지식과 자립연수 가능성 탐색 (A Study on Algebraic Knowledge of Mathematics Teachers on Solving Polynomials and Searching Possibility of Self Learning the Knowledge)

  • 신현용;한인기
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제29권4호
    • /
    • pp.661-685
    • /
    • 2015
  • 본 연구는 수학교사의 전문성을 신장시킬 수 있는 구체적인 가능성을 탐색하는 연구로, 다항식의 해법에 대한 수학교사의 대수 내용지식을 선정하고, 선정된 내용지식을 바탕으로 수학교사의 자립연수를 위한 학습 자료를 개발하였다. 개발된 학습 자료는 수학교사들에게 제공되었으며, 학습 자료가 자립연수에서 활용 가능한지, 수학교사들이 이해 가능한지 등에 대해 검사지로 조사하였고, 연수 방법 및 내용에 대해서도 설문을 하였다. 교사들의 대답을 분석한 결과, 개발된 학습 자료는 자립연수의 활용 가능성, 교사들의 이해 가능성, 연수 방법에 대해 긍정적인 결과를 얻었다.

Awareness and Knowledge of Pre-Service Teachers on Mathematical Concepts: Arithmetic Series Case Study

  • Ilya, Sinitsky;Bat-Sheva, Ilany
    • 한국수학교육학회지시리즈D:수학교육연구
    • /
    • 제12권3호
    • /
    • pp.215-233
    • /
    • 2008
  • Deep comprehension of basic mathematical notions and concepts is a basic condition of a successful teaching. Some elements of algebraic thinking belong to the elementary school mathematics. The question "What stays the same and what changes?" link arithmetic problems with algebraic conception of variable. We have studied beliefs and comprehensions of future elementary school mathematics teachers on early algebra. Pre-service teachers from three academic pedagogical colleges deal with mathematical problems from the pre-algebra point of view, with the emphasis on changes and invariants. The idea is that the intensive use of non-formal algebra may help learners to construct a better understanding of fundamental ideas of arithmetic on the strong basis of algebraic thinking. In this article the study concerning arithmetic series is described. Considerable number of pre-service teachers moved from formulas to deep comprehension of the subject. Additionally, there are indications of ability to apply the conception of change and invariance in other mathematical and didactical contexts.

  • PDF

Knowledge is Key to Variability in Solving Algebraic Word Problems

  • Ng, Swee Fong
    • 한국수학교육학회지시리즈D:수학교육연구
    • /
    • 제15권4호
    • /
    • pp.311-325
    • /
    • 2011
  • In this paper I propose that teaching students the most efficient method of problem solving may curtail students' creativity. Instead it is important to arm students with a variety of problem solving heuristics. It is the students' responsibility to decide which heuristic will solve the problem. The chosen heuristic is the one which is meaningful to the students.

학교수학에서의 대수적 구조 지도에 대한 소고 (A study on the teaching of algebraic structures in school algebra)

  • 김성준
    • 한국학교수학회논문집
    • /
    • 제8권3호
    • /
    • pp.367-382
    • /
    • 2005
  • 본 연구는 학교수학에서 대수적 구조(군)의 지도에 관한 논의를 담고 있다. 이를 위해 먼저 Bruner가 제시한 지식의 구조에 대해 논의하고, 그 내용을 학교대수의 지도와 관련지어 살펴본다. 또한 대수적 구조 가운데 군 개념을 중심으로 하여 이와 관련된 선행연구를 Piaget, Freudenthal, Dubinsky, Burn 등의 논의에서 검토해본다. 그리고 초등수학에서부터 고등학교 수학까지 군 개념과 관련된 내용이 어떻게 표현되고 있는지를 살펴본다. 학교수학에서 군 개념과 관련된 내용은 초등수학에서부터 시작되는데, 초등수학의 경우 항등원, 교환법칙, 결합법칙 등을 수의 맥락에서 찾아볼 수 있다. 중학교 수학에서는 덧셈과 곱셈 연산에 있어서 항등원, 역원, 교환법칙, 결합법칙이 보다 구체적으로 제시되고 있으며, 이러한 규칙은 등식의 성질과 이항, 일차방정식의 풀이 등을 통해 살펴볼 수 있다. 고등학교 수학에서는 이항연산을 비롯한 여러 영역에서 군 개념을 포함하는 대수적 구조가 제시되고 있다. 이에 비해 학교대수에서는 이러한 주제들을 통합적으로 구성하려는 시도가 이루어지지 않고 있으며 각각의 내용이 독립적으로 다루어지고 있다. 본 연구에서는 학교대수에서 군 개념과 관련된 내용들을 검토함으로써 대수적구조(군) 측면에서 이러한 내용들을 종합해보고자 한다.

  • PDF

'역 분수 문제'에 대한 5학년 학생들의 해결 방법 분석 (An analysis of solution methods by fifth grade students about 'reverse fraction problems')

  • 방정숙;조선미
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제58권1호
    • /
    • pp.1-20
    • /
    • 2019
  • As the importance of algebraic thinking in elementary school has been emphasized, the links between fraction knowledge and algebraic thinking have been highlighted. In this study, we analyzed the solution methods and characteristics of thinking by fifth graders who have not yet learned fraction division when they solved 'reverse fraction problems' (Pearn & Stephens, 2018). In doing so, the contexts of problems were extended from the prior study to include the following cases: (a) the partial quantity with a natural number is discrete or continuous; (b) the partial quantity is a natural number or a fraction; (c) the equivalent fraction of partial quantity is a proper fraction or an improper fraction; and (d) the diagram is presented or not. The analytic framework was elaborated to look closely at students' solution methods according to the different contexts of problems. The most prevalent method students used was a multiplicative method by which students divided the partial quantity by the numerator of the given fraction and then multiplied it by the denominator. Some students were able to use a multiplicative method regardless of the given problem contexts. The results of this study showed that students were able to understand equivalence, transform using equivalence, and use generalizable methods. This study is expected to highlight the close connection between fraction and algebraic thinking, and to suggest implications for developing algebraic thinking when to deal with fraction operations.

수학적 개념으로서의 등호 분석 (Analysis of the Equality Sign as a Mathematical Concept)

  • 도종훈;최영기
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제42권5호
    • /
    • pp.697-706
    • /
    • 2003
  • In this paper we consider the equality sign as a mathematical concept and investigate its meaning, errors made by students, and subject matter knowledge of mathematics teacher in view of The Model of Mathematic al Concept Analysis, arithmetic-algebraic thinking, and some examples. The equality sign = is a symbol most frequently used in school mathematics. But its meanings vary accor ding to situations where it is used, say, objects placed on both sides, and involve not only ordinary meanings but also mathematical ideas. The Model of Mathematical Concept Analysis in school mathematics consists of Ordinary meaning, Mathematical idea, Representation, and their relationships. To understand a mathematical concept means to understand its ordinary meanings, mathematical ideas immanent in it, its various representations, and their relationships. Like other concepts in school mathematics, the equality sign should be also understood and analysed in vie w of a mathematical concept.

  • PDF

Mathematical Thinking and Developing Mathematical Structure

  • Cheng, Chun Chor Litwin
    • 한국수학교육학회지시리즈D:수학교육연구
    • /
    • 제14권1호
    • /
    • pp.33-50
    • /
    • 2010
  • The mathematical thinking which transforms important mathematical content and developed into mathematical structure is a vital process in building up mathematical ability as mathematical knowledge based on structure. Such process based on students' recognition of mathematical concept. Developing mathematical thinking into mathematical structure happens when different cognitive units are connected and compressed to form schema of solution, which could happen through some guided problems. The effort of arithmetic approach in problem solving did not necessarily provide students the structure schema of solution. The using of equation to solve the problem is based on the schema of building equation, and is not necessary recognizing the structure of the solution, as the recognition of structure may be lost in the process of simplification of algebraic expressions, leaving only the final numeric answer of the problem.

Geometry: Do High School Mathematics Teachers really Need it?

  • Cox, Wesley
    • 한국수학교육학회지시리즈D:수학교육연구
    • /
    • 제25권3호
    • /
    • pp.189-199
    • /
    • 2022
  • A debate about the importance of geometry courses has existed for years. The questions have revolved around its significance to students and teachers alike. This study looks to determine whether a teacher taking a college-level geometry course has a positive relationship with their students' algebraic reasoning skills. Using data from the High School Longitudinal Study 2009 (HSLS09: Ingels et al., 2011, 2014), it was determined that 9th-grade teachers who took a college-level geometry course had a significant positive association with their students' 11th-grade algebraic reasoning scores. This study suggests that teachers who take geometry during college have a lasting effect on their students. The implications of these findings and how they may affect higher education are discussed.

Secondary Teachers' Views about Proof and Judgements on Mathematical Arguments

  • Kim, Hangil
    • 한국수학교육학회지시리즈D:수학교육연구
    • /
    • 제25권1호
    • /
    • pp.65-89
    • /
    • 2022
  • Despite its recognition in the field of mathematics education and mathematics, students' understanding about proof and performance on proof tasks have been far from promising. Research has documented that teachers tend to accept empirical arguments as proofs. In this study, an online survey was administered to examine how Korean secondary mathematic teachers make judgements on mathematical arguments varied along representations. The results indicate that, when asked to judge how convincing to their students the given arguments would be, the teachers tended to consider how likely students understand the given arguments and this surfaces as a controversial matter with the algebraic argument being both most and least convincing for their students. The teachers' judgements on the algebraic argument were shown to have statistically significant difference with respect to convincingness to them, convincingness to their students, and validity as mathematical proof.