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Abstract 

 
Despite its recognition in the field of mathematics education and mathematics, students’ 

understanding about proof and performance on proof tasks have been far from promising. 

Research has documented that teachers tend to accept empirical arguments as proofs. In 

this study, an online survey was administered to examine how Korean secondary 

mathematic teachers make judgements on mathematical arguments varied along 

representations. The results indicate that, when asked to judge how convincing to their 

students the given arguments would be, the teachers tended to consider how likely 

students understand the given arguments and this surfaces as a controversial matter with 

the algebraic argument being both most and least convincing for their students. The 

teachers’ judgements on the algebraic argument were shown to have statistically 

significant difference with respect to convincingness to them, convincingness to their 

students, and validity as mathematical proof.  

 

Keywords Proof, Reasoning, Secondary Teacher, Teacher Knowledge. 
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I. INTRODUCTION  

 
Proof and the roles of it have been acknowledged by researchers (Alcock & Inglis, 

2008; Ball, Hoyles, Jahnke, & Movshovitz-Hadar, 2002; De Villiers, 1990; Ellis et al., 

2019; Epstein & Levy, 1995; Harel & Sowder, 1998; Knuth, 2002a, 2002b; Lakatos, 1976; 

Schoenfeld, 1994) and the importance placed on it in the context of school mathematics is 

echoed across curricula (Australian Curriculum, Assessment and Reporting Authority 

[ACARA], 2015; Council of Chief State School Officers [CCSSO], 2010; Department of 

Education, 2014; Ministry of Education [MoE], 2011, 2015; National Council of Teachers 

of Mathematics [NCTM], 2000). For example, Schoenfeld (1994) argues that proof is a 

fundamental aspect of doing and recording mathematics. NCTM (2000) considers proof to 

be powerful ways of understanding mathematical phenomena: “Mathematical reasoning 

and proof offer a powerful way of developing and expressing insights about a wide range 

of phenomena” (p. 56). CCSSO (2010) considers proof to be essential for students’ learning 

and doing mathematics. To heed the call for centrality of proof in school mathematics, 

there have been efforts made to unearth issues that are concerned with instruction of proof. 

One of such effort is investigating students’ or teachers’ understandings about 

proof. By proof, I refer to a mathematical argument that is a logical sequence (or chain) of 

showing how one reasons from an assumption to a result (Stylianides, 2009). Using this 

definition of proof, in this study, faulty (or invalid) proofs that are not acceptable by 

mathematicians are referred to as arguments. I take proving to be one’s act of developing 

a proof: In other words, proving is one’s undertaking to develop a proof. Researchers (e.g., 

Inglis & Weber, 2012; Knuth, Choppin, & Bieda, 2009; Schoenfeld, 1988; Senk, 1985) 

reported that students’ understanding about or producing proofs does not reach the level of 

mastery. Secondary students are not the only case for lack of understanding about proof 

such as overreliance on superficial features of mathematical arguments when asked to 

evaluate validity of them (Harel & Sowder, 1998; Knuth, 2002b), validating mathematical 

arguments with resort on external mathematical authority (Harel & Sowder, 1998), or even 

a few of confirming examples suffice to prove a mathematical conjecture (Almeida, 2000; 

Coe & Ruthven, 1994; Harel & Sowder, 1998; Knuth et al., 2009). Here and throughout 

the paper, I use examples for a proposition or conjecture to refer to all possible members 

within the domain of the proposition or conjecture. For example, 2 is an example of a 

proposition of which domain is all even numbers. In light of Simon and Blume’s (1996) 

point that student’s understanding of justification in mathematics is “likely proceed from 

inductive toward deductive and toward greater generality” (p. 9), of principal interest and 

close relevance to this study is how examples enable transition to proof by coming into 

recognition that examples inform the operation(s) or proof method(s) which can be applied 

to the general case (i.e. representative case) of a class of examples (Alcock & Inglis, 2008; 

Ellis et al., 2013; Lockwood et al., 2013; Ozgur et al., 2019) or that they lead to the 

conceptual insight (Sandefur, Mason, Stylianides, & Watson, 2013). In the literature, 

however, not much is known about what constitutes a generic example to teacher’s 

viewpoint, and how a teacher can facilitate transition of student’s thinking from example(s) 

to a proof. Also, teachers seem to conceptualize mathematical proof somewhat 
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idiosyncratically due to multiplicity of what a proof serves to do in mathematics (Hanna, 

2000; Hersh, 1993; Knuth, 2002a, 2002b). Furthermore, different conceptions about what 

a mathematical proof allow for various perspectives toward the same data and distinct 

interpretations (Knuth, Zaslavsky, & Kim, 2022). As a result, students have difficulty 

producing mathematical arguments that they find convincing and are asked to produce 

(Healy & Hoyles, 2000). The state of affairs calls for an action to address the 

aforementioned issues regarding proof, example, and their relationship. In this regard, the 

research question of this study are as follows:  

 

a) How do teachers make judgements of a given mathematical argument in terms of 

convincingness, validity as a proof, and genericity? 

b) Are the judgements different across teachers? 

 

 

II. RELATED LITERATURE 

 

Conceptualizations of Proof and Roles that Proof Plays in Mathematics  

Proof plays a crucial role in mathematics. Several researchers consider proof as a 

tool to establish the truth of a mathematical claim (de Villiers, 1990; Harel & Sowder, 1998; 

Knuth, 2002b; Lakatos, 1976), provides insight into similar problems (Alcock & Inglis, 

2008; Ellis et al., 2019; Epstein & Levy, 1995; Lynch & Lockwood, 2019), and, finally, is 

a fundamental aspect of recording and doing mathematics (Ball et al., 2002; Schoenfeld, 

1994).  

To heed the call for centrality of proof in school mathematics, there have been 

many attempts to conceptualize a mathematical proof (Stylianides, Stylianides, & Weber, 

2016; Weber, 2014). Albeit such efforts, to date, it is generally accepted that there is no 

consensus on the definition of proof since different conceptualizations of proof lead to 

different research outcomes which are guided by unique research goals (Balacheff, 2002; 

Reid & Knipping, 2010; Weber, 2014). In light of studies (e.g., Almeida, 2000; Knuth, 

2002b; Harel & Sowder, 1998), there are diverse conceptualizations and criterion about 

whether a mathematical argument qualifies as a proof. Diversity in teachers’ 

conceptualizations of proof engenders different outcomes of instruction of proof (Weber, 

2014). This line of reasoning led to investigate teachers’ conceptualizations about proof in 

school mathematics. In particular, this study was to investigate teachers’ 

conceptualizations about proof and roles of example use when student engages in proving-

related activities. 

 

Generic Examples that Bridge Examples and Proofs  

Generic examples1 (Balacheff, 1988) that offer insight into the general method 
                                                        
1 The term generic example was coined by Balacheff (1988) and, by the term, he referred to 

examples that generic examples are examples that “involves making explicit the reasons for the 
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which holds true for general cases, are of instructional value in teaching and learning of 

proof (Knuth et al., 2019; Mason & Pimm, 1984; Walther, 2006). However, what is 

problematic about considering empirical arguments as proofs is that opportunities to 

progress from examples to proof are taken away from students (Simon & Blume, 1996; 

Blanton & Stylianou, 2014). This issue stems from the fact that teachers’ understanding 

about proof is not sophisticated well enough.  

Research has documented that teachers tend to accept empirical arguments as 

proofs. Harel and Sowder (1998) reported that teachers have empirical proof scheme of 

which valid mode of proof, to those who have the scheme, is nothing more than testing a 

few examples against a mathematical proposition. Similarly, other researchers (Almeida, 

2000; Basturk, 2010; Coe & Ruthven, 1994, Knuth et al., 2020) confirmed similar results 

that there still persists such tendency among teachers to accept as proof empirical 

arguments that only test a subset of examples to evaluate truth of the arguments. To some 

extent, as is the case of generic example, this tendency is explained as, to mathematics 

educators, use of generic example is often seen as productive and accessible for secondary 

students (Leron & Zaslavsky, 2013; Zaslavsky, 2018).  

Of particular interest of this study is generic examples, examples that offer insight 

into the general method(s) that can be applied to the objects within the domain of a 

mathematical conjecture (Balacheff, 1988), allowing for an accessible entry for students to 

gain insight into proofs that they strive to develop (Kim, 2020; Knuth et al., 2019; Lakatos, 

1976; Lockwood et al., 2013; Pólya, 1954). This study investigates how teachers judge 

genericity of the given approaches to a mathematical conjecture so that, in teacher 

preparation programs, issues of equating genericity (of examples) and generality (of proof) 

can be addressed by noting what teachers need to know in regards to making judgements 

on arguments that students provide and what is admissible as valid proofs in mathematics. 

Equating genericity and generality is problematic in that students have no opportunity to 

advance their understanding. For a clear distinction between genericity and generality in 

this study, what distinguishes them is an argument with potential to be developed to a proof 

versus a proof at its own right.  

This point, however, should not be misinterpreted as examples are sufficient to 

prove or formulate conjectures by their own right. As Knuth et al. (2009) reported, the 

majority of the students tended to provide empirical justifications of which primary source 

of conviction originate from examples. This calls for an action to emphasis limitations of 

empirical (or example-based) reasoning (Chazan, 1993) in instruction of mathematics and 

to improve students’ use of examples in a more strategic way that are similar to ways how 

experts use examples when asked to evaluate or prove mathematical conjectures 

(Lockwood et al., 2013). A similar case holds true for teachers: teachers tend to 

misunderstand empirical justification for proof (Coe & Ruthven, 1994; Harel & Sowder, 

1998) or to lower the bar for their students (Knuth, 2002a; Knuth et al., 2020), 

                                                        

truth of an assertion by means of operations or transformations on an object that is not there in 

its own right, but as a characteristic representative of its class. The account involves the 

characteristic properties and structures of a class, while doing so in terms of the names and 

illustration of one of its representatives” (p. 219). 
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acknowledging that their students are unlikely to write a proof and thus equating a few 

worked examples and a valid proof for students. 

 

Teachers’ Preference on Representations of Proof  

Teachers tend to prefer proofs of certain form(s) over the other (e.g., Almeida, 

2000; Harel & Sowder, 1998; Healy & Hoyles, 2000; Knuth, 2002b). According to the 

study by Knuth (2002b), teachers’ judgements on given arguments were made taking into 

consideration some superficial aspects of proof rather than substance of proof. For instance, 

when evaluating (purported to be) proofs, teachers sought sufficient level of detail, concrete 

features, familiarity (Knuth, 2002b) or tended to rate best arguments that they had seen 

before or involved algebraic expressions (Coe & Ruthven, 1994).  

This tendency that teachers show when asked to evaluate mathematical arguments 

seems to be known to students as well. Healy and Hoyles (2000) investigated students’ 

proof conceptions in algebra and learned that students have a dual criterion on proof: Proofs 

that are convincing to them and those that are likely to receive best marks from their 

teachers. Not surprisingly, students evaluated arguments more highly that they find to be 

confusing due to algebraic expressions involved rather than those that they find to be 

convincing. To address the issues in regard to teachers’ preference (or tendency to favor 

proofs of certain forms), there is need to examine what ground(s) teachers base their 

judgements of mathematical arguments when asked to do so in general, how their 

judgments change by taking different lens (e.g., convincingness, validity, genericity) in 

particular. 

 

 

III. METHODS 

 

The participants of the study were secondary mathematics teachers or prospective 

secondary mathematics teachers in Korea. Per the mathematics curriculum (MoE, 2011, 

2015), all of the participants were exposed to explicit instruction about proof at their 8th 

grade. In Korea, the teacher preparation programs for secondary mathematics teachers 

consist of required mathematics courses that account for 45% of credit hours required for 

graduation (Kwon, Kim, & Cho, 2012) and the courses include real analysis, abstract 

algebra, linear algebra, and topology. Given the undergraduate curricula, either prospective 

or inservice secondary mathematics teachers were eligible to participate in the online 

survey. The select participants were provided with a small incentive as compensation for 

their time and effort. 

The solicitation for participation was sent primarily through venues including 

emails and messages to the departmental pages in a social network platform. In an attempt 

to reach out to the teacher preparation programs in Korea, I searched all the departmental 

websites to look for the email addresses and sent emails to the administrative staffs that 

include the overview of the study and who are eligible to participate in the survey. While 

a number of the programs responded that they would send the flyer to their students, the 
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majority of them had no response. Then, alternatively, I sent the flyer to the student council 

websites of the mathematics education department on a social network platform. Among 

about twenty messages sent, a few of them returned with their willingness to partake in the 

survey. Finally, for recruiting inservice teachers, I took the approach so called snowballing 

to start from teachers whom I used to work with or who were in contact with me, asking 

them to disseminate the flyers to other teachers who are eligible. This recruitment took a 

month and the flyer was sent periodically during the recruitment period. As a result, the 

resulting number of the participants was 104 consisting of 84 prospective teachers and 20 

inservice teachers. The number of the participants who completed all the questionnaire was 

27. 

The demographic of the participants varied in terms of their years of teaching, the 

highest degrees they earned, grades they were teaching at the time of their participation 

and whether they completed student teaching. The vast majority (about 71%) of the 

prospective teachers did not complete their student teaching by the time of their 

participation. Most of the inservice teachers reported that they had completed required 

coursework for their master’s degrees and 40% of the teachers responded that they only 

completed undergraduate degrees, leaving the rest of them who completed their doctoral 

studies regardless of degrees earned. It should be noted that, in the section grades they are 

currently teaching, the aggregate percentage exceeds one hundred percent due to the fact 

that the participants would choose multiple grades where applicable. Table 1 provides the 

detailed demographic of the participants. 

 

Table 1. Demographic of the participants 

 

Prospective 

teachers 
Student Teaching Completed 

  Yes No 

  28.55% 71.45% 

Inservice 

teachers 
Highest Degrees they earned 

  Undergraduate Master’s Doctoral 

  40% 45% 15% 

   

  Years of Teaching 

 ~ 5 years ~ 10 years 10~15 years 15~20 years 20 years~ 

 5% 55% 25% 0% 15% 

  

 Grades they are currently teaching 

 Grade 7 Grade 8 Grade 9 Grade 10 Grade 11 Grade 12 

 4.55% 13.64% 0.00% 31.82% 45.45% 50.00% 
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Data Collection 

Teachers (including undergraduate students in the track of teacher preparation) 

were invited to respond to an online survey with a collection of questions focused on 

teachers’ own definitions of proof, perceptions of example use in various didactical 

situations, and their judgement on whether the given arguments constitute valid proofs and 

the extent to which they thought their students (imaginary students for prospective teachers) 

were strategic in using examples.   

The intent of the online survey was to learn about teachers’ judgements on students’ 

use of examples and how they make judgements of validity, convincingness, and genericity 

of the given arguments. One of the assumptions in identifying the sub-domains was that 

results of this study would suffice to formulate hypotheses about relationships between 

teachers’ definitions of proof, judgements in terms of genericity, convincingness, and 

validity of an argument that may be tested in future research. For this study, my hypothesis 

is that teachers’ judgements on mathematical arguments might be differed by how 

mathematical arguments are represented, how convincing teachers find the arguments to 

be, how generic examples involved in given arguments are thought to be by the teachers 

and how valid as mathematical proof teachers deem the arguments to be. In the literature, 

not much is known about how one reaches conviction about a mathematical argument of 

which principal evidence is a generic example. The results of this study would shed light 

on how one reaches judgement on genericity of an example. The following table (Table 2) 

provides an overview of the survey to better align the aforementioned sub-domains with 

the research questions and the survey questions. 

 

Table 2. Alignment of sub-domains with the research questions and survey 

questions 

 

Sub-domain 
Relevant Survey 

Question 

What to be elicited 

by survey question 

Judgement on 

Convincingness 

3 

Teachers’ judgements on 

convincingness from their 

viewpoint and reasons 

4 

Teachers’ judgements on 

convincingness from the viewpoint 

of their students and reasons 

Judgement on 

Validity as Proof 
5 

Teachers’ judgements on validity 

and reasons about their judgements 

 
Upon the development of the initial survey questions, the questions were sent to 

two reviewers who were teachers and their comments were reflected in the questions 

revised accordingly. The comments were concerned with cognitive load laid on 
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participants regarding the length of the survey and difficulty of mathematical propositions 

given in the initial questionnaire. In the initial questionnaire, there were three mathematical 

propositions with each of them accompanied by four approaches. Also, there came four 

questions along with each of the twelve approaches. In the following revision, two of the 

propositions were removed from the questionnaire and the least demoing proposition 

remained. The revised questionnaire was sent out to a few teachers for a pilot-testing, 

finally, the resulting questionnaire (see Appendix for detail) was responded by the 

participants and the results will be reported.  

 

 

Figure 1. Arguments 1, 2, 3, and 4. 

 

 For the survey questions 3 to 5, four arguments to the conjecture (for a whole 

number 𝑛 , 1 + 2 + ⋯ (𝑛 − 1) + 𝑛 + (𝑛 − 1) + (𝑛 − 2) + ⋯ + 2 + 1 = 𝑛2 ) were 

provided to investigate on what ground(s) teachers’ judgements on mathematical 

arguments are made in terms of convincingness, validity, and genericity. The arguments 

were varied with respect to representations (e.g., linguistic, diagrammatic/pictorial, 

Argument 1) I substitute n with 3 and it worked out:  

1 + 2 + 3 + 2 + 1 = 9 = 32 

 

Argument 2) I substitute n with 4 and it worked out:  

1 + 2 + 3 + 4 + 3 + 2 + 1 = 16 = 42  and the same will hold true for all whole numbers. 

 

Argument 3) I substitute n with 4 and it worked out:  1 + 2 + 3 + 4 + 3 + 2 + 1 = 16 = 42 

As shown below, for other cases, squares with n circles in a diagonal line will be constructed 

and the squares should have n times n circles. Therefore, the given conjecture holds true for 

all whole numbers. 

 
 

Argument 4)  

1 + 2 + ⋯ (𝑛 − 1) + 𝑛 + (𝑛 − 1) + (𝑛 − 2) + ⋯ + 2 + 1 

= 2{1 + 2 + ⋯ + (𝑛 − 1)} + 𝑛 

= [{1 + (𝑛 − 1)} + {2 + (𝑛 − 2)} + ⋯ + {𝑘 + (𝑛 − 𝑘) + ⋯ + {(𝑛 − 1) + 1} + 𝑛 

= (𝑛 + 𝑛 + ⋯ + 𝑛) + 𝑛 

= (𝑛 − 1)𝑛 + 𝑛 

= 𝑛2 − 𝑛 + 𝑛 

= 𝑛2 
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symbolic/algebraic) and particularity of example involved in each argument. The first 

argument (argument 1) was purely an empirical argument involving a particular example 

(𝑛 = 3) and written in an algebraic form. The second argument was similar to the first one 

in that it involved a particular example (𝑛 = 4) and written in a similar way to the first 

argument, however, it was explicit that the second argument showed the argument 

provider’s consideration about generalizability of the operation that would be replicated to 

all other examples within the domain of the conjecture. The third argument contained the 

same component of using the particular example (𝑛 = 4) and was written in an algebraic 

form. On top of that, the third argument included justification on the generality of the 

operation that was absent in the second argument. The last argument involved a general 

case that is usually seen in the case of mathematical proof and was written in algebraic and 

diagrammatic representation supporting the proof method of counting the number of circles 

in a square with n circles in each side. 

 

Data Analysis 

The analysis of the responses was conducted in a complementary way. For all of 

the survey questions, there were forced choices given to participants. The analysis of the 

forced choices resulted in a quantitative summary. Along with the forced choice questions, 

there were written prompts for participants to provide their reasons or explanations about 

their choices.  

The written responses were first analyzed through inductive coding (Creswell & 

Poth, 2016). In the subsequent coding, when the emergent codes seemed to be pertaining 

to the literature, the codes were modified based on the relevant literature and other codes 

underwent further revisions to form a set of codes that allows for manageable coding.  

Finally, to explore relationships between their judgements on the given arguments, 

I conducted several dependent t-tests on each argument. The t-tests were conducted to test 

whether there was statistically significant difference between any pair of judgements (e.g., 

convincingness to them versus validity as mathematical proof) by each participant. Given 

that all of the judgements were given as 4-point Likert scale and clustered around each 

participant and each of the given argument, dependent t-test was the appropriate model to 

address the last research question. For the degrees of freedom for the t-test, I considered 

the number of the participants who responded to all the questionnaire which is 28 

(equivalently, 27 of the degrees of freedom). 

 

 

Ⅳ. DISCUSSION 

 

Teachers’ judgments on mathematical arguments vary by the viewpoint they take 

at a moment. As reported earlier, their judgements on the given arguments were differed 

when they viewed the arguments from the viewpoint of them or their students. What seems 

most striking to me is that the judgements to the argument 4 were controversial as being 

both most and least convincing when viewing it from the viewpoint of students. Given the 
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reasons the teachers provided for justifying their ratings to the argument, by and large, their 

choices were made based on how likely a mathematical argument is to be understood by a 

particular group of reader. This suggests a hypothesis that may be tested in future research: 

to what extent teachers’ selections of mathematical arguments for their instruction are 

associated with their expectations about how likely a particular group of students are to 

understand the arguments.  

The results of the study need further examinations on several grounds. Taken into 

consideration prior education of the participants, years of teaching, and grade levels that 

they were teaching at the time of their participation, there may be formulated a variety of 

research questions involving different groups of participants, particular content area, or 

years of teaching. As the participants of this study were consisting of prospective teachers 

and inservice teachers (working at either middle school or high school) without particular 

attention to a specific content area or grade level, such variations in characteristics of 

participants would nourish the literature, providing insight into what such variations lead 

to. Since the study is based on the data collected from an online survey, other forms (e.g., 

interview, classroom observation) of data would enable more insightful results that have 

not been documented elsewhere. However, for a more robust finding that may yield a more 

general claim to be made, the recruitment method taken in this study should be 

reconsidered and more participants must be recruited for future study. 

The results of the study confirm results reported previously in the literature. For 

one, when asked to evaluate mathematical arguments, teachers show overreliance on some 

superficial features (e.g., appearance, variable use) of the arguments and that is in 

resonance with the results reported previously in the literature (Coe & Ruthven, 1994; 

Harel & Sowder, 1998; Knuth, 2002b). Though there were different reasons why the 

teachers rated the argument with symbolic representations and a general case as most valid 

as mathematical proof, it may be argued that they prefer arguments with algebraic 

representations over other arguments. In light of the results (Harel & Sowder, 1998; Healy 

& Hoyles, 2000; Knuth, 2002b), this argument seems to be viable. Future research needs 

to investigate this phenomenon with a variety of mathematical arguments involved. For 

another, this study reiterates that teachers’ views about centrality of proof in school 

mathematics still remain a matter of debate among teachers as reported by Knuth (2002b). 

As mentioned earlier, I have reservation to argue that the results of this study are sufficient 

enough to make generalized claims for the population of interest, but it can be said that 

researchers see the merit of this study to formulate hypotheses to be tested in future study. 

Lastly, noteworthy of the results is that teachers’ judgements on the algebraic 

argument were differed by viewing it from different perspectives. The algebraic argument 

(argument 4) was a controversial one given that teachers considered it as being most and 

least convincing to their students. Their judgements showed statistically significant 

difference in the survey questions 3 to 5. Particularly, with respect to convincingness to 

them and validity as mathematical proof, difference in their judgements comes as call for 

research that investigate teacher’s own meaning for convincing arguments versus valid 

proofs.  
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V. CONCLUSION 

 

Teachers’ judgements on convincingness, validity, and genericity of the given 

arguments to the conjecture 

The participants were given the four arguments that varied along several 

dimensions including representation, particularity/generality of a case involved, and 

genericity of operation.  convincingness, validity, and genericity. The relevant survey 

questions include the questions 3 to 5. The survey questions 3 to 5 were given marks using 

4-point Likert scale: 1 as being the most convincing/valid, 2 as being the second most 

convincing/valid followed by 3 and 4 as being the least convincing/valid. With respect to 

convincingness, they were asked to make judgements on each argument taking the 

viewpoint from teacher (the survey question 3) or from student (the survey question 4). 

With regard to validity, they considered validity of each of the given arguments as a 

mathematical proof and left marks of them based on their judgements. Similarly, they were 

asked to evaluate genericity of each argument taking into consideration of how likely the 

proof method/operation involved in the argument could be applicable to all other elements 

(i.e., whole numbers) within the domain of the conjecture.  

The vast majority of (72.4%) the teachers seemed to be most convinced by the 

argument 4. The same proportion of the teachers found second most convincing the 

argument 3 followed by the arguments 2 and 1. Though not apparent in Table 3, the half 

of the teachers ranked order the arguments 4, 3, 2, and 1 in descending order with respect 

to convincingness: argument 4 as being most convincing and argument 1 as being least 

convincing. The reasons they provided included: 

 

As a manipulation of algebraic expressions, the argument 4 is explicit in 

explaining that the conjecture holds true, thus being most convincing. Intuitively, 

the argument 3 shows a generalizable proof method that is valid. Though the 

argument 2 is quite a common type of reasoning among students, it is not 

mathematically valid. The arguments 2 and 1 are no way convincing since both 

of them involve inductive reasoning that cannot be justified in mathematics 

I ranked order the arguments in terms of potential existence of counterexamples. 

The argument 4 seems not to have any counterexamples while the argument 1 

seems most likely to be encountered with counterexamples 

 

It seems apparent in their responses that the teachers tended to find most 

convincing algebraic representation in argument 4 rather than those with particular 

numbers. In comparison to a written description contained in the argument 2, the teachers 

seemed to be more convinced by the diagrammatic representation along with the written 

description that appears in argument 3. Table 3 provides the detailed overview of the result. 
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Table 3. Convincingness to teachers 

 

 
Most 

convincing 

Somewhat 

Convincing 

Less 

Convincing 

Least 

Convincing 

Argument 1 10.3% 3.4% 20.7% 65.5% 

Argument 2 13.8% 20.7% 55.2% 10.3% 

Argument 3 3.4% 72.4% 17.2% 6.9% 

Argument 4 72.4% 3.4% 6.9% 17.2% 

 

Taking the viewpoint from students, the teachers’ judgements on convincingness 

of the given arguments varied greatly from when taking the viewpoint from them. Each 

argument was not received the same rating from the majority of the teachers except 

argument 1 which was rated as third most convincing by the slight majority (51.7%) of the 

participants. Arguments 2 and 4 seemed to be controversial in that the ratings bifurcated. 

Argument 2 was rated as second most convincing by 37.9% of the participants and, at the 

same time, 31% of the participants rated it as least convincing. The exact same number of 

participants deemed argument 4 as being both most convincing and least convincing. This 

stark contrast in the results between what was reported in the preceding paragraph and this 

paragraph made sense in the written responses the teachers provided: 

 

Easy to be understood by students (in the preceding prompt, “I ordered the 

approaches in logical order”) 

For those who might have difficulty following the algebraic manipulation, it 

seems intuitively easier for them to understand what the arguments are 

explaining(previously, “derivation involving an algebraic representation seems 

more viable than the intuitive one”) 

Involving algebraic representations, the argument 4 might be difficult for students 

to be grappled with grasping meaning. […](previously, “I ordered them in 

ascending order of doubt that there are likely to exist exceptions”) 

 

Though their responses showed a variety of reasons why they ranked order the 

arguments differently in the prompts (prompts asking their judgements on convincingness 

taking their views as teachers and the viewpoint from their students), it became explicit 

that their judgements were based on different criterion when changing the viewpoints. This 

change comes as no surprise given that convincingness of a mathematical argument seems 

to be associated with the reader’s understanding of the argument (Sowder & Harel, 2003).  
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Table 4. Convincingness to students 

 

 
Most 

convincing 

Somewhat 

Convincing 
Less convincing 

Least 

convincing 

Argument 1 24.1% 6.9% 51.7% 17.2% 

Argument 2 20.7% 31.0% 10.3% 37.9% 

Argument 3 17.2% 48.3% 27.6% 6.9% 

Argument 4 37.9% 13.8% 10.3% 37.9% 

 

The teachers made judgements on validity of the given arguments as 

mathematical proof. Over three quarters of the teachers showed a tendency of ranking 

order the arguments in ascending order with respect to the numbers assigned to the 

arguments. In other words, about 86 percent of the teachers found the argument 4 most 

valid as a mathematical proof; about 83% of them deemed the argument 3 to be second 

most valid; about 76% of them considered the argument 2 as less valid; finally, about 86% 

of them saw the argument 1 as least valid. The teachers’ written responses included: 

 

A mathematical proof for the conjecture should show that the conjecture holds 

true for all whole numbers 

It (the argument 4) is a deductive proof that can be applicable more generally 

To qualify as a valid proof, an argument must begin with a general case n rather 

than a particular number 

As it (the argument 4) involves an algebraic equation, it seems most valid 

 

Table 5. Judgements on validity as a mathematical proof 

 

 Most Valid Somewhat Valid Less Valid Least Valid 

Argument 1 10.3% 0.0% 3.4% 86.2% 

Argument 2 3.4% 17.2% 75.9% 3.4% 

Argument 3 0.0% 82.8% 17.2% 0.0% 

Argument 4 86.2% 0.0% 3.4% 10.3% 

 

The responses were concerned with generality of the proof method or generality 

of the case involved in the argument. One of the responses seems that the teacher based her 

or his judgement on the appearance of the argument: that is, algebraic representation. This 

is consistent with the views appeared in Knuth’s (2002b) that teachers often rely on 
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superficial features of mathematical arguments when asked to judge the arguments qualify 

as mathematical proof. Table 5 provides an overview of the results about teachers’ 

judgments in terms of validity as mathematical proof. 

Finally, the vast majority (about 70.4%) of the teachers tended to favor the proof 

method used in the argument 4 over other approaches. Following argument 4, argument 3 

was placed in the second place by the majority vote with the proportion of about 63% of 

the teachers while the arguments 2 and 1 were chosen by 37% and 11.1% of the teachers, 

respectively. The sample responses that supported their preference on the proof method 

used in argument 4 were as follows: 

 

The arguments other than the argument 4 were merely confirming examples for 

which the conjecture holds true, so that the proof methods cannot be applicable 

to other examples 

The algebraic derivation used in the argument 4 can be applicable to other similar 

algebraic proofs so that the method is mathematically valid to be applied to other 

mathematical objects 

 

In the first response shown above, the teacher articulated distinction between 

examples and a proof that is pertaining to the limitation of examples: examples do not 

suffice to prove any conjectures. The following response attended to the generality of the 

proof method: the method can be applicable to other objects within the domain of the 

conjecture (i.e. all whole numbers). However, there were some responses that seemed to 

base their judgements on superficial features (e.g., appearance, variable use, diagram) of 

an argument: 

 

It (the argument 4) uses variables 

It (the argument 4) involves algebraic manipulation […] 

It (the argument 4) does not contain any specific number, thus being applicable 

to other proofs 

It (the approach 4) has more detail than other arguments 

 

These responses do not seem surprising at all given the results (see e.g., Coe & 

Ruthven, 2002; Harel & Sowder, 1998; Knuth, 2002b): teachers’ tendency to base their 

judgements about mathematical arguments on appearance of the arguments. Though the 

teachers might have more to say what was not explicit in the aforementioned responses, 

such responses sufficed to conclude that the teachers’ judgements were made based on 

some of aspects (e.g., representation, proof method, appearance) of mathematical argument. 

In the survey question 6, teachers were asked to which argument(s) they found the 

proof method to be applicable to all other examples within the domain conjecture (i.e. the 

set of whole numbers) of the conjecture. The vast majority (70.4%) of the teachers 

generally accepted the argument 4 as being generic and the argument 3 was accepted as 

being general in the proof method of the argument by 63% of the participants. Following 
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the arguments 3 and 4, 37% of the participants deemed the proof method of the argument 

2 to be generic while only 11.1% of them considered the argument 1 as generic in method.  

Generic proofs (or proofs involving generic examples) are of both instructional 

value and with potential risk. As researchers argued (Basturk, 2010; Knuth et al., 2020), 

generic examples are certainly of instructional value in that they possess potential to guide 

students to gain insight into solution or proof method. However, Leron and Zaslavsky 

(2013) argue: “The main weakness of a generic proof is, obviously, that it does not really 

prove the theorem. The “fussiness” of the full, formal, deductive proof is necessary to 

ensure that the theorem’s conclusion infallibly follows from its premises” (p. 27, italics 

added). With the conflicting arguments in mind, I argue that generic proofs should be 

deemed to be seeds of proofs or seeds of generality that possess potential to be developed 

into proofs with some modifications to gradually increase the level of generality and the 

level of formalism from those of a student’s initial proof with the assumption that students’ 

proofs are often undervalued on surface due to use of everyday language (Zack, 1999).  

To that end, what we as mathematics educators need to address is to map the terms 

genericity, convincingness, generality, and formalism in the terrain of proof. To the 

teachers’ views about genericity, what seemed apparent in their responses was lack of 

distinction between genericity, convincingness, generality, and formalism. In other words, 

their judgements on genericity seemed to be based on one over the other without paying 

attention to generality and formalism. I believe that convincingness should be seen as a 

community (or reader)-specific entity of which judges are members of a community: In 

other words, this might not be consistent across communities, thus being considered to be 

not so significant when determining whether an argument is a valid proof. However, levels 

of generality and formalism are to be determined by professional mathematicians and the 

judgements can be uniform across communities. Therefore, what must be addressed in 

teacher preparation programs and professional development courses is to have teachers to 

develop robust understanding about generality and formalism in regards to proof rather 

than convincingness and the mapping and trajectories of progression from empirical 

arguments to formal proofs must be part of students’ learning about proof. As Porteous 

(1990) argued,  

 

It must be emphasised that this view does not entail a rejection of empirical 

methods in learning about mathematics, or an undervaluing of concrete 

experiences. [F]irst-hand experience is vital to learning [...] The proof types used 

by children are naturally informal, but it would be a mistake to devalue them 

because of this. Proving, in the sense of explaining generalities, should be part of 

the normal activity of all learners of mathematics. (p. 5)  

 

Empirical methods or empirical reasoning should have its place somewhere in K-

12 education not as the end but as the beginning or transitional phase of learning. If we 

imagine a continuum with two extremes of students’ informal ways of doing mathematics 

in an end and formal ways in the other, empirical methods must be placed in anywhere but 

the extreme of formal. What should be noted in instruction of proof is distinction between 
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valid types of proof and types of proof that are admissible as part of learning mathematics. 

Rather than placing empirical arguments nowhere in learning mathematics, they must be 

seen as seeds or sprouts to be grown up later, thus having reservation to call it mature plants 

as people differentiate ducklings from ducks: “empiricism is an essential component of the 

machinery of deduction, conversely, however deduction makes possible a discovery that is 

inaccessible to insight or empiricism” (Schoenfeld, 1986, p. 249). Therefore, potential to 

be developed into a valid proof must not be considered equally as what has been 

accomplished in the proof and teachers need not reject such potential but have an eye for 

it so as to support students to weather through struggles they may encounter since it takes 

huge cognitive struggle for a student to make transition from examples to a proof (Tall, 

1999).  

 

The relationship between Teachers’ judgements  

Several dependent t-tests were conducted to explore relationships between the 

judgements that the teachers made with respect to convincingness to them, convincingness 

to their students, and validity as mathematical proof. Given that the judgements were 

measured as 4-point Likert scale and clustered around each participant and each of the 

given arguments, dependent t-tests by each argument were conducted to address the last 

research question. The degree of freedom for each of the t-tests was 25 since there were 26 

participants who responded to all the survey questions 3 to 5. To denote what judgements 

are being compared, I use T for convincingness to you (the survey question 3), S for 

convincingness to your students (the survey question 4), and V for validity as mathematical 

proof (the survey question 5). For example, in the table 6, the second row from top in the 

second column from left is denoted as T-S, thus implying that the t-test was conducted to 

test whether there is statistically significant difference in the judgements for the argument 

1 between the survey question 3 and 4. The full test results are provided in Table 6.  

 

Table 6. Descriptive statistics for judgements made for each argument  
 

 Judgements Mean Standard Deviation 

Argument 1 

T(Survey question 3) 3.42 1.01 

S(Survey question 4) 2.65 1.38 

V(Survey question 5) 3.69 0.75 

Argument 2 

T(Survey question 3) 2.77 0.33 

S(Survey question 4) 2.62 0.62 

V(Survey question 5) 2.85 0.13 

Argument 3 

T(Survey question 3) 2.08 0.69 

S(Survey question 4) 2.00 1.23 

V(Survey question 5) 2.19 0.31 

Argument 4 

T(Survey question 3) 1.73 1.27 

S(Survey question 4) 2.73 1.43 

V(Survey question 5) 1.27 0.66 

Note. The closer to 1 ratings are, the more convincing/valid the arguments are 
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There were several tests that show statistically significant difference. Such 

difference exists for arguments 1 and 4. For argument 1, the results from judgments 

between the survey questions 3 (M=3.42, SD=1.01) and 4 (M=2.65, SD=1.38) indicate that 

shifting their viewpoint from teachers to students results in difference in their judgements 

on the argument, t(25)=-3.24 and p =0.0034 (<0.05). Also, the results from judgments 

between the survey questions 4 (M=2.65, SD=1.38) and 5 (M=3.69, SD=0.75) indicate that 

the judgements on convincingness to students and validity as mathematical proof result in 

difference in their judgements on the argument 1, t(25)=-3.95 and p =0.0006 (<0.05). For 

argument 4, judgements from every lens (e.g., convincingness to teachers or students, 

validity as mathematical proof) show statistically significant difference in responses 

between any pair of the survey questions 3 to 5. The detailed analysis is provided in Table 

7 shown below. 

 

Table 7. Results of dependent t-tests between judgements (Note: p-values with 

asteroids mean that there is statistically significant difference) 
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 Comparison Mean Standard error t-statistic p-value 

Argument 1 

T-S -0.77 0.06 -3.24 0.0034* 

S-V -1.04 0.07 -3.95 0.0006* 

T-V 0.27 0.04 1.27 0.2154 

Argument 2 

T-S -0.15 0.02 -1.07 0.2939 

S-V 0.23 0.03 1.36 0.1848 

T-V 0.08 0.01 0.7 0.4903 

Argument 3 

T-S -0.08 0.03 -0.4402 0.6636 

S-V 0.19 0.03 1.0444 0.3063 

T-V 0.12 0.02 0.9013 0.3761 

Argument 4 

T-S 1 0.08 3.6056 0.0014* 

S-V -1.46 0.09 -4.9590 0.0000* 

T-V -0.46 0.04 -2.29 0.0309* 
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Appendix 

 

The survey questionnaire 

 

1. Are you a pre-service teacher? 

a) Yes, I am a pre-service teacher. 

b) No, I am an in-service teacher. 

2. Please provide your definition of a mathematical proof. 

 

 

For the following questions 3 to 5, please consider the four arguments that ensue and rank order 

them in terms of the way presented in each question.  

For a whole number , 

 
 

 

Argument 1) I substitute n with 3 and it worked out:  

1 + 2 + 3 + 2 + 1 = 9 = 32 

 

Argument 2) I substitute n with 4 and it worked out:  

1 + 2 + 3 + 4 + 3 + 2 + 1 = 16 = 42  and the same will hold true for all whole numbers. 

 

Argument 3) I substitute n with 4 and it worked out:  1 + 2 + 3 + 4 + 3 + 2 + 1 = 16 = 42 As 

shown below, for other cases, squares with n circles in a diagonal line will be constructed and the 

squares should have n times n circles. Therefore, the given conjecture holds true for all whole 

numbers. 

 
 

Argument 4)  

1 + 2 + ⋯ (𝑛 − 1) + 𝑛 + (𝑛 − 1) + (𝑛 − 2) + ⋯ + 2 + 1 

= 2{1 + 2 + ⋯ + (𝑛 − 1)} + 𝑛 

= [{1 + (𝑛 − 1)} + {2 + (𝑛 − 2)} + ⋯ + {𝑘 + (𝑛 − 𝑘) + ⋯ + {(𝑛 − 1) + 1} + 𝑛 

= (𝑛 + 𝑛 + ⋯ + 𝑛) + 𝑛 

= (𝑛 − 1)𝑛 + 𝑛 

= 𝑛2 − 𝑛 + 𝑛 

= 𝑛2 
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3. Which argument do you think is most convincing to you? The lesser the number is, the 

more convincing the approach is: 1 as being most convincing and 4 as being least convincing. 

Please provide your explanation on ranking order the given approaches. 

 1 2 3 4 

Argument 1     

Argument 2     

Argument 3     

Argument 4     

 

4. Which argument do you think is most convincing to your students? The lesser the 

number is, the more convincing the approach is: 1 as being most convincing and 4 as being least 

convincing. Please provide your explanation on ranking order the given approaches. 

 1 2 3 4 

Argument 1     

Argument 2     

Argument 3     

Argument 4     

 

5. Which argument do you think is most valid as proof? The lesser the number is, the more 

valid as proof the approach is: 1 as being most valid as proof and 4 as being least valid as proof. 

Please explain why you think so. 

 1 2 3 4 

Argument 1     

Argument 2     

Argument 3     

Argument 4     

 

6. For prospective teachers, have you completed student teaching? 

a) Yes     

b) No 

7. For inservice teachers, what is your highest level of degree earned? 

a) Undergraduate 

b) Master’s  

c) Doctoral 

8. For inservice teachers, how long have you been teaching mathematics? 

a) Less than 6 years 

b) 6 to 10 years 

c) 11 to 20 years 
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d) More than 20 years 

9. For inservice teachers, what grade level(s) are you currently teaching? 

a) Grade 6 

b) Grade 7 

c) Grade 8 

d) Grade 9 

e) Grade 10 

f) Grade 11 

g) Grade 12 

 


