• Title/Summary/Keyword: Algae removal

Search Result 210, Processing Time 0.029 seconds

Application of hybrid material, modified sericite and pine needle extract, for blue-green algae removal in the lake

  • Choi, Hee-Jeong
    • Environmental Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.364-373
    • /
    • 2018
  • The present study assessed the efficient removal of nutrients and Chlorophyll-a (Chl-a) by using methyl esterified sericite (MES) and pine needle extracts (PNE), a low cost and abundant green hybrid material from nature. For this purpose, the optimal conditions were investigated, such as the pH, temperature, MES and PNE ratio, and MES-PNE dose. In addition, a Microcystis aeruginosa control using MES-PNE was also analyzed with various inhibition models. The removal of the nutrient and Chl-a onto MES-PNE was optimized for over 95% removal as follows: 2-2.5 for the MES-PNE ratio, 7-8 pH and a $22-25^{\circ}C$ temperature. In this respect, approximately 1.52-2.20 g/L of MES-PNE was required to remove each 1 g of dry weight/L of Chl-a. Total phosphorus (TP) has a greater influence on the increase in Chl-a than total nitrogen (TN) according to the correlation between TN, TP and Chl-a. Moreover, the Luong model was the best model for fitting the biodegradation kinetics data from Chl-a on MES-PNE from lake water. The novel hybrid material MES-PNE was very effective at removing TN, TP and Chl-a from the lake and can be applied in the field.

Analysis of Neurotoxins, Anatoxin-a, Saxitoxin in Algae Cultured and Algae in Dam Reservoir and its Water Treatment (배양조류 및 댐 저수지 조체중 신경독소 Anatoxin-a, Saxitoxin류의 분석 및 수처리방안)

  • Kim, Hak-Chul;Choi, Il-Whan
    • Journal of environmental and Sanitary engineering
    • /
    • v.23 no.4
    • /
    • pp.37-44
    • /
    • 2008
  • In this study we developed the analytical methods for the determination of three neurotoxin; anatoxin-a, saxitoxin and neosaxitoxin using HPLC/FLD system and this analytical methods were applied to real sample; algae culture and algae extracts. For the HPLC/FLD analysis of anatoxin-a samples were concentrated on WCX(Weak Cation Exchanger) SPE and then anatoxin-a in concentrate was derivatized with NBD-F solution. Supernatant was injected on HPLC system. For the HPLC/FLD analysis of saxitoxin and neosaxitoxin samples were separated on the column and then derivatizied by post column reactor for fluorescen detection. For post column reaction of saxitoxin we feed two kinds of reaction solution; Oxidizing Reagent of which composition was periodic acid(7mM) in 50mM potassium phosphate buffer, pH 9 and acidifying reagent of which Composition was 0.5M acetic acid. The LOD value for anatoxin-a, saxitoxin and neosaxitoxin in HPLC/FLD method was 24.3 ng. $35{\mu}g/L$, $27{\mu}g/L$ respectively. We determined the anatoxin-a content of lyophilized anabaena flos-aquae and $20{\mu}g/g$ d.w. of anatoxin-a was detected. We analyzed saxitoxin and neosaxitoxin in algae culture media and extracts of lypopyllized algal cell cultured and that of Deachung reservior. Saxitoxin and neosaxitoxin in real sample were below the limit of detection. Although there are various water treatment processes for removing neurotoxins were suggested no process give simultaneous and complete removal of neurotoxins. It was cocluded that nanofiltration which reject material by size can be a process for removal of neurotoxins.

Effectiveness of elimination inflowing algae in water treatment plant using natural algae remover (천연 조류 제거제를 이용한 정수장 유입 조류 제거 효율)

  • Jung, Hoyoung;Kim, Younghee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.4
    • /
    • pp.311-319
    • /
    • 2019
  • The purpose of this study was to analyze water treatment characteristics, including the efficiency of removing algae from water purification plants, by installing a demonstration facility for decontamination of algae, including natural algae remover injection equipment, in the water purification plant. Jar-test showed that the optimum injection of natural decontaminant was 20 mg/L. Of the water contaminant treatment efficiency of the intake and water purification plants, Chl-a averaged 74.0% elimination efficiency from $5.0mg/m^3$ to $1.3mg/m^3$ and the maximum treatment efficiency was 91.5% removal efficiency when the inflow concentration of Chl-a was $11.8mg/m^3$. In addition, 51.2% and 47.1% of the taste and odor indicator items, geosmin and 2-MIB, resulted from the overgrowth and decaying of algae, respectively, to identify toxic substances and odor reduction effects. In addition, elimination efficiencies of SS and Turbidity materials were higher than 70.0%. In the injection of natural algae remover, no effects such as sudden changes in water quality due to secondary reactions were found, and appropriate levels were maintained under water treatment conditions.

Nutrients Removal of Municipal Wastewater and Lipid Extraction with Microalgae (조류를 이용한 하수고도처리 및 지질추출)

  • Park, Sangmin;Kim, Eunseok;Jheong, Weonhwa;Kim, Geunsu;Ahn, Kyunghee;Han, Jinseok;Kwon, Ohsang
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.796-803
    • /
    • 2012
  • Potential feasibility of nutrients removal and biofuel production with microalgae was evaluated in batch culture. Distribution of microalgae in fresh water including reservoir and river was investigated to search for the species with high content of lipid that could converted into biofuel. Green algae, Chlorella and Scenedesmus sp., these are known as species containing high lipid content for biodiesel production, were observed in both summer and autumn season. However another highly lipid-containing species, botryococcus sp. was not observed in this study. In mixed culture of microalgae using synthesized wastewater medium, green algae were found to be dominant, comparing to other species of diatoms and blue-green algae. And microalgae were also capable of removing nitrogen and phosphorus in batch experiments. During the culture period of 14 days, removal efficiencies of nitrate and phosphorus were 30% and 82%, respectively. Furthermore, content of the intracellular lipid extracted from algae cell was as favorable as 12-30% in the mixed culture where Scenedesmus and Chlorella sp. were dominant. Therefore the mixed culture of microalgae could be applied to biofuel production and tertiary wastewater treatment, even though there are economic barriers to overcome.

Removal efficiency of various coagulants for Microcystis, Anabaena and Oscillatoria at different cell densities

  • Han, Joo Eun;Park, Soo Hyung;Yaqub, Muhammad;Yun, Sang Leen;Kim, Seog-ku;Lee, Wontae
    • Membrane and Water Treatment
    • /
    • v.13 no.1
    • /
    • pp.15-20
    • /
    • 2022
  • The continuous industrial growth increases the volume of pollutants discharged into the water, which induces Cyanobacteria in the receiving bodies. The removal of various cyanobacteria such as Microcystis, Anabaena, and Oscillatoria was explored to analyze their removal characteristics using different chemical and mineral coagulants. The chemical coagulants, including poly aluminium chloride (PACl), Alum, and mineral coagulants such as Loess and Illite, were tested to remove selected cyanobacteria. Results indicated that the removal rate increased with coagulant dosage regardless of the type of coagulant. The removal of selected cyanobacteria using chemical coagulant was found in the order: Microcystis > Anabaena > Oscillatoria. The PACl coagulant showed the most efficient removal rate for Microcystis, Anabaena, Oscillatoria. Removal rate of Microcystis conducted by PACl showed 92% at 100,000 cells/mL and 98.4% at 1,000,000 cells/mL whereas Illite showed lower 70% and Loess showed lower 50% in both 100,000 cells/mL and 1,000,000 cells/mL. The removal rate of Anabaena and Oscillatoria by PACl and Alum was higher 80%, while the other coagulants exhibited lower than 75% at 1,000,000 cells/mL. The removal rate of Oscillatoria by PACl was 80.1%, while the other coagulants exhibited lower than 70% at 1,000,000 cells/mL. Moreover, the mineral coagulants showed better removal efficiency at a higher concentration than low concentration during experiments. Therefore, removing cyanobacteria from water streams can be improved through coagulation by selecting a specific coagulant for a particular type of algae.

Removal of Algae by Natural Coagulants of Soil Origin (천연 무기응집제를 이용한 조류 제거)

  • Kim, Seog-Ku;Kim, Dong-Kwan;Kang, Sungwon;Ahn, Jaehwan;Kim, Il-Ho;Yun, SangLeen;Lee, Sanghyup;Lee, Wontae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.12
    • /
    • pp.883-888
    • /
    • 2013
  • Coagulation and sedimentation tests were conducted with clay and three different coagulants of soil origin (AC-A, AC-B, AC-C) to determine optimal coagulant types and doses to remove algae in stagnant water bodies such as reservoirs. Raw water had an algal density of 2,950 cells/mL and was dominated by Cyanobacteria. Removal rates of algal density by clay (50 mg/L) were 49% and 85% after 10 and 30 minutes sedimentation, respectively. Other natural coagulants achieved 80-90% removal in 10 minutes and 89-94% removal in 30 minutes of sedimentation after adding 20 mg/L each. AC-A was the optimal coagulant from this study considering algal removal rates and other water quality parameters such as turbidity and pH. For the same removal rates of algae, raw waters with higher algal densities required higher coagulant doses although no strong corelation was observed. The coagulants of soil origin did not impact orgnic contents and pH of raw water, but remove phosphate up to 70%.

Application of Pore-controllable Fiber Filter(PCF) as a Pretreatment for Water Treatment Process (정수처리공정 전처리로서의 공극제어 섬유여과기(PCF)의 적용)

  • Lee, Chul-Woo;Lee, Byung-Goo;Lee, Il-Kuk;Lee, Shun-Hwa;Bae, Sang-Dae;Kang, Lim-Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.2
    • /
    • pp.235-244
    • /
    • 2006
  • A PCF(Pore Controllable Fiber Filter) process was applied as a pretreatment of water treatment for reduction of turbidity. The experimental results obtained from the PCF showed that the removal efficiency of turbidity without coagulation was around over 70 percent. However, the removal efficiency of turbidity by the coagulation-PCF process was high as much as over 95%. Thus, the coagulation pretreatment was required for the better operation of the PCF. The SEM (Scanning Electron Microscope) images of fiber before and after filtration showed that the filtration mechanism of PCF filter is both controlling attachment mechanism and Sieving mechanism through fiber pore. For the coagulation-PCF process, optimum dosage of coagulant was needed for the economical operation, and for this, determining the optimum dosage by using a filter column test. Also only 16mg/L of alum was used to obtain high algae removal efficiency over 90%. Therefore, it can be concluded that coagulation-PCF process is very effective pretreatment process for algae removal.

Optimized cultivation of Ettlia sp. YC001 in eutrophic pond water for nutrient removal and biomass production

  • Oh, Hyung-Seok;Ahn, Chi-Yong;Srivastava, Ankita;Oh, Hee-Mock
    • ALGAE
    • /
    • v.33 no.4
    • /
    • pp.319-327
    • /
    • 2018
  • Ettlia sp. YC001, a highly settleable and productive microalga, was shown to be effective in removing nutrients and capturing suspended solids from eutrophic pond water. The optimum conditions for the Ettlia sp. YC001 cultivation were investigated using water from a landscape pond. The pond water was supplemented with different N : P ratios by weight, and the biomass production and nutrient removal compared in batch cultures. The maximum removal rate of N and P was with an N : P ratio of 16 : 1. Plus, the turbidity dropped to near zero within 4 days. Meanwhile, chemostat cultivation showed that the biomass productivity and nutrient removal rate increased when increasing the dilution rate, where a dilution rate of $0.9d^{-1}$ showed the highest N and P removal rate at $32.4mg\;L^{-1}\;d^{-1}$ and $1.83mg\;L^{-1}\;d^{-1}$, respectively, and highest biomass and lipid productivity at $0.432g\;L^{-1}\;d^{-1}$ and $67.8mg\;L^{-1}\;d^{-1}$, respectively. The turbidity was also reduced by 98% in the chemostat cultivation. Moreover, auto-flocculation and pH were closely connected to the turbidity removal. As a result, this study identified the optimal N : P ratio for small pond water treatment using an Ettlia sp. YC001, while also establishing the optimal conditions for nutrient removal, turbidity reduction, and biomass production.

Growth regime and environmental remediation of microalgae

  • Hammed, Ademola Monsur;Prajapati, Sanjeev Kumar;Simsek, Senay;Simsek, Halis
    • ALGAE
    • /
    • v.31 no.3
    • /
    • pp.189-204
    • /
    • 2016
  • Microalgal bioremediation of CO2, nutrients, endocrine disruptors, hydrocarbons, pesticides, and cyanide compounds have evaluated comprehensively. Microalgal mitigation of nutrients originated from municipal wastewaters, surface waters, and livestock wastewaters has shown great applicability. Algal utilization on secondary and tertiary treatment processes might provide unique and elegant solution on the removing of substances originated from various sources. Microalgae have displayed 3 growth regimes (autotrophic, heterotrophic, and mixotrophic) through which different organic and inorganic substances are being utilized for growth and production of different metabolites. There are still some technology challenges requiring innovative solutions. Strain selection investigation should be directed towards identification of algal that are extremophiles. Understanding and manipulation of metabolic pathways of algae will possible unfold solution to utilization of algae for mitigation of dissolve organic nitrogen in wastewaters.

Removal of Cd(II) and Pb(II) Ions in water by the Ulva pertusa and Sargassum horneri (Ulva pertusa 및 Sargassum horneri를 이용한 수중 Cd(II) 및 Pb(II) 이온의 제거)

  • 김영하;박미아;박수인;김택제;이기창
    • Journal of Environmental Science International
    • /
    • v.7 no.6
    • /
    • pp.803-809
    • /
    • 1998
  • Heavy metal ions in water were removed using algal biomass as adsorbents. Absorbents were dried for 3 days, ground them by 40~60 mesh and then were swelled in a buffer solution for 1hr. After being packed in the column, commercially available standard solution of Cd(II) and Pb(II) ions were diluted to get the suitable concentration and then it was eluted with the rate of 1mι/min. Heavy metals on the adsorbents were recovered with nitric acid. More amounts of Cd(II) or Pb(II) ions in green algae, Ulva pertusa, than in brown algae, Sargassum horneri, were adsorbed. Pb(II) ion was adsorbed more than Cd(II) ion in both algae. The pH effect of adsorbed amounts of Cd(II), Pb(II) ions on the biomass was shown the following order ; pH 10.5 > 8.5 > 7.0 > 5.5 > 3.5. Recovery ratio of metal ions front algae is shown higher in acidic or neutral conditions than it in alkalic ones. Pb(II) ion is recovered relatively more than Cd(II) ion in our system.

  • PDF