Browse > Article
http://dx.doi.org/10.4490/algae.2016.31.8.28

Growth regime and environmental remediation of microalgae  

Hammed, Ademola Monsur (International Institute of Halal Research and Training, International Islamic University)
Prajapati, Sanjeev Kumar (Biochemical Engineering and Bioenergy Lab, Division of Biotechnology, Netaji Subhas Institute of Technology)
Simsek, Senay (Department of Plant Sciences, North Dakota State University)
Simsek, Halis (Department of Agricultural & Biosystems Engineering, North Dakota State University)
Publication Information
ALGAE / v.31, no.3, 2016 , pp. 189-204 More about this Journal
Abstract
Microalgal bioremediation of CO2, nutrients, endocrine disruptors, hydrocarbons, pesticides, and cyanide compounds have evaluated comprehensively. Microalgal mitigation of nutrients originated from municipal wastewaters, surface waters, and livestock wastewaters has shown great applicability. Algal utilization on secondary and tertiary treatment processes might provide unique and elegant solution on the removing of substances originated from various sources. Microalgae have displayed 3 growth regimes (autotrophic, heterotrophic, and mixotrophic) through which different organic and inorganic substances are being utilized for growth and production of different metabolites. There are still some technology challenges requiring innovative solutions. Strain selection investigation should be directed towards identification of algal that are extremophiles. Understanding and manipulation of metabolic pathways of algae will possible unfold solution to utilization of algae for mitigation of dissolve organic nitrogen in wastewaters.
Keywords
bioremediation; microalgae; nutrient removal; wastewater;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Sinetova, M. A., Kupriyanova, E. V., Markelova, A. G., Allakhverdiev, S. I. & Pronina, N. A. 2012. Identification and functional role of the carbonic anhydrase Cah3 in thylakoid membranes of pyrenoid of Chlamydomonas reinhardtii. Biochim. Biophys. Acta Bioenerg. 1817:1248-1255.   DOI
2 Gupta, N., Balomajumder, C. & Agarwal, V. K. 2010. Enzymatic mechanism and biochemistry for cyanide degradation: a review. J. Hazard. Mater. 176:1-13.   DOI
3 Gurbuz, F., Ciftci, H. & Akcil, A. 2009. Biodegradation of cyanide containing effluents by Scenedesmus obliquus. J. Hazard. Mater. 162:74-79.   DOI
4 Vanelslander, B., Pohnert, G., Sabbe, K. & Vyverman, W. 2011. Chemical warfare between microalgae: biogenetic bromine cyanide (BrCN) controls biofilm formation around a marine benthic diatom. In Mees, J. & Seys, J. (Eds.) VLIZ Young Marine Scientists’ Day. Vlaams Instituut voor de Zee (VLIZ), Oostende, p. 102.
5 Vymazal, J. & Březinová, T. 2015. The use of constructed wetlands for removal of pesticides from agricultural runoff and drainage: a review. Environ. Int. 75:11-20.   DOI
6 Wang, B., Li, Y., Wu, N. & Lan, C. Q. 2008. CO2 bio-mitigation using microalgae. Appl. Microbiol. Biotechnol. 79:707-718.   DOI
7 Wang, S. -K., Stiles, A. R., Guo, C. & Liu, C. -Z. 2014. Microalgae cultivation in photobioreactors: an overview of light characteristics. Eng. Life Sci. 14:550-559.   DOI
8 Wang, Y., Duanmu, D. & Spalding, M. H. 2011. Carbon dioxide concentrating mechanism in Chlamydomonas reinhardtii: inorganic carbon transport and CO2 recapture. Photosynth. Res. 109:115-122.   DOI
9 Wasi, S., Tabrez, S. & Ahmad, M. 2013. Use of Pseudomonas spp. for the bioremediation of environmental pollutants: a review. Environ. Monit. Assess. 185:8147-8155.   DOI
10 Kao, C. -Y., Chiu, S. -Y., Huang, T. -T., Dai, L., Hsu, L. -K. & Lin, C. -S. 2012a. Ability of a mutant strain of the microalga Chlorella sp. to capture carbon dioxide for biogas upgrading. Appl. Energy 93:176-183.   DOI
11 Kao, C. -Y., Chiu, S. -Y., Huang, T. -T., Dai, L., Wang, G. -H., Tseng, C. -P., Chen, C. -H. & Lin, C. -S. 2012b. A mutant strain of microalga Chlorella sp. for the carbon dioxide capture from biogas. Biomass Bioenergy 36:132-140.   DOI
12 Kaushik, P. & Malik, A. 2015. Mycoremediation of synthetic dyes: an insight into the mechanism, process optimization and reactor design. In Singh, S. N. (Ed.) Microbial Degradation of Synthetic Dyes in Wastewaters. Springer, Cham, pp. 1-25.
13 Knowles, C. J. & Bunch, A. W. 1986. Microbial cyanide metabolism. Adv. Microb. Physiol. 27:73-111.   DOI
14 Koopmans, D. J. & Bronk, D. A. 2002. Photochemical production of dissolved inorganic nitrogen and primary amines from dissolved organic nitrogen in waters of two estuaries and adjacent surficial groundwaters. Aquat. Microb. Ecol. 26:295-304.   DOI
15 Kruse, O., Rupprecht, J., Mussgnug, J. H., Dismukes, G. C. & Hankamer, B. 2005. Photosynthesis: a blueprint for solar energy capture and biohydrogen production technologies. Photochem. Photobiol. Sci. 4:957-970.   DOI
16 Muñoz, R. & Guieysse, B. 2006. Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Res. 40:2799-2815.   DOI
17 Moroney, J. V., Ma, Y., Frey, W. D., Fusilier, K. A., Pham, T. T., Simms, T. A., DiMario, R. J., Yang, J. & Mukherjee, B. 2011. The carbonic anhydrase isoforms of Chlamydomonas reinhardtii: intracellular location, expression, and physiological roles. Photosynth. Res. 109:133-149.   DOI
18 Moroney, J. V. & Ynalvez, R. A. 2007. Proposed carbon dioxide concentrating mechanism in Chlamydomonas reinhardtii. Eukaryot. Cell 6:1251-1259.   DOI
19 Morris, I. 1974. Nitrogen assimilation and protein synthesis. In Stewart, W. D. P. (Ed.) Algal Physiology and Biochemistry. Blackwell, Oxford, pp. 583-609.
20 Muñoz, R., Guieysse, B. & Mattiasson, B. 2003. Phenanthrene biodegradation by an algal-bacterial consortium in two-phase partitioning bioreactors. Appl. Microbiol. Biotechnol. 61:261-267.   DOI
21 Dang, K. -V., Plet, J., Tolleter, D., Jokel, M., Cuiné, S., Carrier, P., Auroy, P., Richaud, P., Johnson, X., Alric, J., Allahverdiyeva, Y. & Peltier, G. 2014. Combined increases in mitochondrial cooperation and oxygen photoreduction compensate for deficiency in cyclic electron flow in Chlamydomonas reinhardtii. Plant Cell 26:3036-3050.   DOI
22 Choudhary, P., Prajapati, S. K. & Malik, A. 2016. Screening native microalgal consortia for biomass production and nutrient removal from rural wastewaters for bioenergy applications. Ecol. Eng. 91:221-230.   DOI
23 Converti, A., Casazza, A. A., Ortiz, E. Y., Perego, P. & Del Borghi, M. 2009. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem. Eng. Process. Process Intensif. 48:1146-1151.   DOI
24 Crumpton, W. G., Isenhart, T. M. & Mitchell, P. D. 1992. Nitrate and organic N analyses with second-derivative spectroscopy. Limnol. Oceanogr. 37:907-913.   DOI
25 Nelson, D. L., Lehninger, A. L. & Cox, M. M. 2008. Lehninger principles of biochemistry. Macmillan, New York, 1100 pp.
26 Xia, J. -R. & Gao, K. -S. 2005. Impacts of elevated CO2 concentration on biochemical composition, carbonic anhydrase, and nitrate reductase activity of freshwater green algae. J. Integr. Plant Biol. 47:668-675.   DOI
27 Yang, C., Hua, Q. & Shimizu, K. 2000. Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions. Biochem. Eng. J. 6:87-102.   DOI
28 Kumar, K., Dasgupta, C. N., Nayak, B., Lindblad, P. & Das, D. 2011. Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresour. Technol. 102:4945-4953.   DOI
29 Kannan, K., Senthilkumar, K. & Giesy, J. P. 1999. Occurrence of butyltin compounds in human blood. Environ. Sci. Technol. 33:1776-1779.   DOI
30 Nadal, M., Wargent, J. J., Jones, K. C., Paul, N. D., Schuhmacher, M. & Domingo, J. L. 2006. Influence of UV-B radiation and temperature on photodegradation of PAHs: preliminary results. J. Atmos. Chem. 55:241-252.   DOI
31 Ni, Y., Lai, J., Wan, J. & Chen, L. 2014. Photosynthetic responses and accumulation of mesotrione in two freshwater algae. Environ. Sci. Processes Impacts 16:2288-2294.   DOI
32 Ogbonna, J., Ichige, E. & Tanaka, H. 2002. Interactions between photoautotrophic and heterotrophic metabolism in photoheterotrophic cultures of Euglena gracilis. Appl. Microbiol. Biotechnol. 58:532-538.   DOI
33 Della Greca, M., Pinto, G., Pistillo, P., Pollio, A., Previtera, L. & Temussi, F. 2008. Biotransformation of ethinylestradiol by microalgae. Chemosphere 70:2047-2053.   DOI
34 Abargues, M. R., Ferrer, J., Bouzas, A. & Seco, A. 2013. Removal and fate of endocrine disruptors chemicals under lab-scale postreatment stage: removal assessment using light, oxygen and microalgae. Bioresour. Technol. 149:142-148.   DOI
35 Cannons, A. C. & Pendleton, L. C. 1994. Possible role for mRNA stability in the ammonium-controlled regulation of nitrate reductase expression. Biochem. J. 297:561-565.   DOI
36 Caperon, J., Schell, D., Hirota, J. & Laws, E. 1979. Ammonium excretion rates in Kaneohe Bay, Hawaii, measured by a 15N isotope dilution technique. Mar. Biol. 54:33-40.   DOI
37 Cardol, P., González-Halphen, D., Reyes-Prieto, A., Baurain, D., Matagne, R. F. & Remacle, C. 2005. The mitochondrial oxidative phosphorylation proteome of Chlamydomonas reinhardtii deduced from the Genome Sequencing Project. Plant Physiol. 137:447-459.   DOI
38 Cerón-García, M. C., Fernández-Sevilla, J. M., Sánchez-Mirón, A., García-Camacho, F., Contreras-Gómez, A. & Molina-Grima, E. 2013. Mixotrophic growth of Phaeodactylum tricornutum on fructose and glycerol in fed-batch and semi-continuous modes. Bioresour. Technol. 147:569-576.   DOI
39 Das, P., Lei, W., Aziz, S. S. & Obbard, J. P. 2011. Enhanced algae growth in both phototrophic and mixotrophic culture under blue light. Bioresour. Technol. 102:3883-3887.   DOI
40 de-Bashan, L. E. & Bashan, Y. 2010. Immobilized microalgae for removing pollutants: review of practical aspects. Bioresour. Technol. 101:1611-1627.   DOI
41 Singh, S. P. & Singh, P. 2014. Effect of CO2 concentration on algal growth: a review. Renew. Sustain. Energy Rev. 38:172-179.   DOI
42 Solovchenko, A. & Khozin-Goldberg, I. 2013. High-CO2 tolerance in microalgae: possible mechanisms and implications for biotechnology and bioremediation. Biotechnol. Lett. 35:1745-1752.   DOI
43 Soupene, E., Inwood, W. & Kustu, S. 2004. Lack of the Rhesus protein Rh1 impairs growth of the green alga Chlamydomonas reinhardtii at high CO2. Proc. Natl. Acad. Sci. U. S. A. 101:7787-7792.   DOI
44 Soupene, E., King, N., Feild, E., Liu, P., Niyogi, K. K., Huang, C. -H. & Kustu, S. 2002. Rhesus expression in a green alga is regulated by CO2. Proc. Natl. Acad. Sci. U. S. A. 99:7769-7773.   DOI
45 Subashchandrabose, S. R., Ramakrishnan, B., Megharaj, M., Venkateswarlu, K. & Naidu, R. 2013. Mixotrophic cyano-bacteria and microalgae as distinctive biological agents for organic pollutant degradation. Environ. Int. 51:59-72.   DOI
46 Suzuki, T. & Yamaya, S. 2005. Removal of hydrocarbons in a rotating biological contactor with biodrum. Process Biochem. 40:3429-3433.   DOI
47 Cheirsilp, B. & Torpee, S. 2012. Enhanced growth and lipid production of microalgae under mixotrophic culture condition: effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour. Technol. 110:510-516.   DOI
48 Adams, D. J., Komen, J. V. & Pickett, T. M. 2001. Biological cyanide degradation. In Young, C. (Ed.) Cyanide: Social, Industrial and Economic Aspects. The Metals Society, Warrendale, PA, pp. 203-213.
49 Alcántara, C., Fernández, C., García-Encina, P. A. & Muñoz, R. 2015. Mixotrophic metabolism of Chlorella sorokiniana and algal-bacterial consortia under extended dark-light periods and nutrient starvation. Appl. Microbiol. Biotechnol. 99:2393-2404.   DOI
50 Alpert, S. B., Spencer, D. F. & Hidy, G. 1992. Biospheric options for mitigating atmospheric carbon dioxide levels. Energy Convers. Manag. 33:729-736.   DOI
51 Chekroun, K. B. & Baghour, M. 2013. The role of algae in phytoremediation of heavy metals: a review. J. Mater. Environ. Sci. 4:873-880.
52 Chekroun, K. B., Sánchez, E. & Baghour, M. 2014. The role of algae in bioremediation of organic pollutants. Int. Res. J. Public Environ. Health 1:19-32.
53 Chen, G. -Q. & Chen, F. 2006. Growing phototrophic cells without light. Biotechnol. Lett. 28:607-616.   DOI
54 Hom-Diaz, A., Llorca, M., Rodríguez-Mozaz, S., Vicent, T., Barceló, D. & Blánquez, P. 2015. Microalgae cultivation on wastewater digestate: β-estradiol and 17α-ethynylestradiol degradation and transformation products identification. J. Environ. Manag. 155:106-113.   DOI
55 Tang, D., Han, W., Li, P., Miao, X. & Zhong, J. 2011. CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresour. Technol. 102:3071-3076.   DOI
56 Tang, X., He, L. Y., Tao, X. Q., Dang, Z., Guo, C. L., Lu, G. N. & Yi, X. Y. 2010. Construction of an artificial microalgal-bacterial consortium that efficiently degrades crude oil. J. Hazard. Mater. 181:1158-1162.   DOI
57 Gurbuz, F., Karahan, A., Akcil, A. & Ciftci, H. 2002. Degradation of cyanide by natural algae species. In Extended Abstracts of the Third International Congress ‘Environmental, Micropaleontology, Microbiology and Metobentholog’(EMMM’2002), Vienna, pp. 1-6.
58 Hirooka, T., Akiyama, Y., Tsuji, N., Nakamura, T., Nagase, H., Hirata, K. & Miyamoto, K. 2003. Removal of hazardous phenols by microalgae under photoautotrophic conditions. J. Biosci. Bioeng. 95:200-203.   DOI
59 Hirooka, T., Nagase, H., Uchida, K., Hiroshige, Y., Ehara, Y., Nishikawa, J., Nishihara, T., Miyamoto, K. & Hirata, Z. 2005. Biodegradation of bisphenol A and disappearance of its estrogenic activity by the green alga Chlorella fusca var. vacuolata. Environ. Toxicol. Chem. 24:1896-1901.   DOI
60 Hong, S. -J. & Lee, C. -G. 2007. Evaluation of central metabolism based on a genomic database of Synechocystis PCC6803. Biotechnol. Bioprocess Eng. 12:165-173.   DOI
61 Hong, Y. -W., Yuan, D. -X., Lin, Q. -M. & Yang, T. -L. 2008. Accumulation and biodegradation of phenanthrene and fluoranthene by the algae enriched from a mangrove aquatic ecosystem. Mar. Pollut. Bull. 56:1400-1405.   DOI
62 Iatrou, E. I., Stasinakis, A. S. & Thomaidis, N. S. 2014. Consumption-based approach for predicting environmental risk in Greece due to the presence of antimicrobials in domestic wastewater. Environ. Sci. Pollut. Res. 21:12941-12950.   DOI
63 Zhang, S., Qiu, C. B., Zhou, Y., Jin, Z. P. & Yang, H. 2011. Bioaccumulation and degradation of pesticide fluroxypyr are associated with toxic tolerance in green alga Chlamydomonas reinhardtii. Ecotoxicology 20:337-347.   DOI
64 Zhang, Y., Habteselassie, M. Y., Resurreccion, E. P., Mantripragada, V., Peng, S., Bauer, S. & Colosi, L. M. 2014. Evaluating removal of steroid estrogens by a model alga as a possible sustainability benefit of hypothetical integrated algae cultivation and wastewater treatment systems. ACS Sustain. Chem. Eng. 2:2544-2553.   DOI
65 Zhou, G. -J., Peng, F. -Q., Yang, B. & Ying, G. -G. 2013. Cellular responses and bioremoval of nonylphenol and octylphenol in the freshwater green microalga Scenedesmus obliquus. Ecotoxicol. Environ. Saf. 87:10-16.   DOI
66 Li, F. -F., Yang, Z. -H., Zeng, R., Yang, G., Chang, X., Yan, J. -B. & Hou, Y. -L. 2011. Microalgae capture of CO2 from actual flue gas discharged from a combustion chamber. Ind. Eng. Chem. Res. 50:6496-6502.   DOI
67 Langheinrich, U. 1995. Plasma membrane-associated aminopeptidase activities in Chlamydomonas reinhardtii and their biochemical characterization. Biochim. Biophys. Acta 1249:45-57.   DOI
68 Lee, J. W., Mets, L. & Greenbaum, E. 2002. Improvement of photosynthetic CO2 fixation at high light intensity through reduction of chlorophyll antenna size. Appl. Biochem. Biotechnol. 98-100:37-48.   DOI
69 Li, D., Wang, L., Zhao, Q., Wei, W. & Sun, Y. 2015. Improving high carbon dioxide tolerance and carbon dioxide fixation capability of Chlorella sp. by adaptive laboratory evolution. Bioresour. Technol. 185:269-275.   DOI
70 Li, R., Chen, G. -Z., Tam, N. F. Y., Luan, T. -G., Shin, P. K. S., Cheung, S. G. & Liu, Y. 2009. Toxicity of bisphenol A and its bioaccumulation and removal by a marine microalga Stephanodiscus hantzschii. Ecotoxicol. Environ. Saf. 72:321-328.   DOI
71 Liang, Y., Sarkany, N. & Cui, Y. 2009. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol. Lett. 31:1043-1049.   DOI
72 Perez-Garcia, O., Escalante, F. M. E., de-Bashan, L. E. & Bashan, Y. 2011. Heterotrophic cultures of microalgae: metabolism and potential products. Water Res. 45:11-36.   DOI
73 Ohnishi, N., Mukherjee, B., Tsujikawa, T., Yanase, M., Nakano, H., Moroney, J. V. & Fukuzawa, H. 2010. Expression of a Low CO2–inducible protein, LCI1, increases inorganic carbon uptake in the green alga Chlamydomonas reinhardtii. Plant Cell 22:3105-3117.   DOI
74 Pehlivanoglu, E. & Sedlak, D. L. 2004. Bioavailability of waste-water-derived organic nitrogen to the alga Selenastrum capricornutum. Water Res. 38:3189-3196.   DOI
75 Perez-Garcia, O. & Bashan, Y. 2015. Microalgal heterotrophic and mixotrophic culturing for bio-refining: from metabolic routes to techno-economics. In Prokop, A., Bajpai, R. K. & Zappi, M. E. (Eds.) Algal Biorefineries. Springer, Cham, pp. 61-131.
76 Esperanza, M., Seoane, M., Rioboo, C., Herrero, C. & Cid, Á. 2015. Chlamydomonas reinhardtii cells adjust the metabolism to maintain viability in response to atrazine stress. Aquat. Toxicol. 165:64-72.   DOI
77 Devriese, M., Tsakaloudi, V., Garbayo, I., León, R., Vílchez, C. & Vigara, J. 2001. Effect of heavy metals on nitrate assimilation in the eukaryotic microalga Chlamydomonas reinhardtii. Plant Physiol. Biochem. 39:443-448.   DOI
78 Dosnon-Olette, R., Trotel-Aziz, P., Couderchet, M. & Eullaffroy, P. 2010. Fungicides and herbicide removal in Scenedesmus cell suspensions. Chemosphere 79:117-123.   DOI
79 Eriksson, M., Villand, P., Gardeström, P. & Samuelsson, G. 1998. Induction and regulation of expression of a low-CO2-induced mitochondrial carbonic anhydrase in Chlamydomonas reinhardtii. Plant Physiol. 116:637-641.   DOI
80 Yang, W., Catalanotti, C., Wittkopp, T. M., Posewitz, M. C. & Grossman, A. R. 2015. Algae after dark: mechanisms to cope with anoxic/hypoxic conditions. Plant J. 82:481-503.   DOI
81 Prajapati, S. K., Choudhary, P., Malik, A. & Vijay, V. K. 2014a. Algae mediated treatment and bioenergy generation process for handling liquid and solid waste from dairy cattle farm. Bioresour. Technol. 167:260-268.   DOI
82 López, J. C., Quijano, G., Souza, T. S. O., Estrada, J. M., Lebrero, R. & Muñoz, R. 2013. Biotechnologies for greenhouse gases (CH4, N2O, and CO2) abatement: state of the art and challenges. Appl. Microbiol. Biotechnol. 97:2277-2303.   DOI
83 Mallick, N. 2002. Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals 15:377-390.   DOI
84 Perron, M. -C. & Juneau, P. 2011. Effect of endocrine disrupters on photosystem II energy fluxes of green algae and cyanobacteria. Environ. Res. 111:520-529.   DOI
85 Pittman, J. K., Dean, A. P. & Osundeko, O. 2011. The potential of sustainable algal biofuel production using wastewater resources. Bioresour. Technol. 102:17-25.   DOI
86 Pollock, S. V., Prout, D. L., Godfrey, A. C., Lemaire, S. D. & Moroney, J. V. 2004. The Chlamydomonas reinhardtii proteins Ccp1 and Ccp2 are required for long-term growth, but are not necessary for efficient photosynthesis, in a low-CO2 environment. Plant Mol. Biol. 56:125-132.   DOI
87 Bhatnagar, A., Chinnasamy, S., Singh, M. & Das, K. C. 2011. Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Appl. Energy 88:3425-3431.   DOI
88 Baba, M. & Shiraiwa, Y. 2012. High-CO2 response mechanisms in microalgae. In Najafpour, M. (Ed.) Advances in Photosynthesis: Fundamental Aspects. InTech, Rijeka, pp. 299-320.
89 Bell, G. 2013. Experimental evolution of heterotrophy in a green alga. Evolution 67:468-476.   DOI
90 Berman, T. & Bronk, D. A. 2003. Dissolved organic nitrogen: a dynamic participant in aquatic ecosystems. Aquat. Microb. Ecol. 31:279-305.   DOI
91 Bi, Y. F., Miao, S. S., Lu, Y. C., Qiu, C. B., Zhou, Y. & Yang, H. 2012. Phytotoxicity, bioaccumulation and degradation of isoproturon in green algae. J. Hazard. Mater. 243:242-249.   DOI
92 Borkenstein, C. G., Knoblechner, J., Frühwirth, H. & Schagerl, M. 2011. Cultivation of Chlorella emersonii with flue gas derived from a cement plant. J. Appl. Phycol. 23:131-135.   DOI
93 Cheng, J., Yang, Z., Huang, Y., Huang, L., Hu, L., Xu, D., Zhou, J. & Cen, K. 2015. Improving growth rate of microalgae in a 1191 m2 raceway pond to fix CO2 from flue gas in a coal-fired power plant. Bioresour. Technol. 190:235-241.   DOI
94 Cheng, J., Huang, Y., Feng, J., Sun, J., Zhou, J. & Cen, K. 2013a. Improving CO2 fixation efficiency by optimizing Chlorella PY-ZU1 culture conditions in sequential bioreactors. Bioresour. Technol. 144:321-327.   DOI
95 Cheng, J., Huang, Y., Feng, J., Sun, J., Zhou, J. & Cen, K. 2013b. Mutate Chlorella sp. by nuclear irradiation to fix high concentrations of CO2. Bioresour. Technol. 136:496-501.   DOI
96 Cheng, J., Huang, Y., Lu, H., Huang, R., Zhou, J. & Cen, K. 2014. The oxidation product (NO3) of NO pollutant in flue gas used as a nitrogen source to improve microalgal biomass production and CO2 fixation. RSC Adv. 4:42147-42154.   DOI
97 Thomas, D. N. & Dieckmann, G. S. 2002. Antarctic sea ice: a habitat for extremophiles. Science 295:641-644.   DOI
98 Fernández Sevilla, J. M., Cerón García, M. C., Sánchez Mirón, A., Belarbi, E. H., García Camacho, F. & Molina Grima, E. 2004. Pilot‐plant‐scale outdoor mixotrophic cultures of Phaeodactylum tricornutum using glycerol in vertical bubble column and airlift photobioreactors: studies in fed‐batch mode. Biotechnol. Prog. 20:728-736.   DOI
99 Ferrer-i-Carbonell, A. & Gowdy, J. M. 2007. Environmental degradation and happiness. Ecol. Econ. 60:509-516.   DOI
100 Gamila, H. A. & Ibrahim, M. B. M. 2004. Algal bioassay for evaluating the role of algae in bioremediation of crude oil: I-isolated strains. Bull. Environ. Contam. Toxicol. 73:883-889.   DOI
101 Ueno, R., Wada, S. & Urano, N. 2006. Synergetic effects of cell immobilization in polyurethane foam and use of thermotolerant strain on degradation of mixed hydrocarbon substrate by Prototheca zopfii. Fish. Sci. 72:1027-1033.   DOI
102 Ueno, R., Wada, S. & Urano, N. 2007. Repeated batch cultivation of the hydrocarbon-degrading, micro-algal strain Prototheca zopfii RND16 immobilized in polyurethane foam. Can. J. Microbiol. 54:66-70.
103 Urgun-Demirtas, M., Sattayatewa, C. & Pagilla, K. R. 2008. Bioavailability of dissolved organic nitrogen in treated effluents. Water Environ. Res. 80:397-406.   DOI
104 Vähätalo, A. V. & Järvinen, M. 2007. Photochemically produced bioavailable nitrogen from biologically recalcitrant dissolved organic matter stimulates production of a nitrogen-limited microbial food web in the Baltic Sea. Limnol. Oceanogr. 52:132-143.   DOI
105 Choudhary, P., Bhattacharya, A., Prajapati, S. K., Kaushik, P. & Malik, A. 2015. Phycoremediation-coupled biomethanation of microalgal biomass. In Kim, S. -K. (Ed.) Handbook of Marine Microalgae, Biotechnology Advances. Elsevier, Amsterdam, pp. 483-489.
106 Bronk, D. A., Glibert, P. M. & Ward, B. B. 1994. Nitrogen uptake, dissolved organic nitrogen release, and new production. Science 265:1843-1846.   DOI
107 Bronk, D. A., Roberts, Q. N., Sanderson, M. P., Canuel, E. A., Hatcher, P. G., Mesfioui, R., Filippino, K. C., Mulholland, M. R. & Love, N. G. 2010. Effluent organic nitrogen (EON): bioavailability and photochemical and salinity-mediated release. Environ. Sci. Technol. 44:5830-5835.   DOI
108 Bushaw-Newton, K. L. & Moran, M. A. 1999. Photochemical formation of biologically available nitrogen from dissolved humic substances in coastal marine systems. Aquat. Microb. Ecol. 18:285-292.   DOI
109 Chinnasamy, S., Bhatnagar, A., Hunt, R. W. & Das, K. C. 2010. Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour. Technol. 101:3097-3105.   DOI
110 Chiu, S. -Y., Kao, C. -Y., Huang, T. -T., Lin, C. -J., Ong, S. -C., Chen, C. -D., Chang, J. -S. & Lin, C. -S. 2011. Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures. Bioresour. Technol. 102:9135-9142.   DOI
111 Jacob-Lopes, E., Scoparo, C. H. G., Lacerda, L. M. C. F. & Franco, T. T. 2009. Effect of light cycles (night/day) on CO2 fixation and biomass production by microalgae in photobioreactors. Chem. Eng. Process. Process Intensif. 48:306-310.   DOI
112 Vähätalo, A. V. & Zepp, R. G. 2005. Photochemical mineralization of dissolved organic nitrogen to ammonium in the Baltic Sea. Environ. Sci. Technol. 39:6985-6992.   DOI
113 Van Den Hende, S., Vervaeren, H., Desmet, S. & Boon, N. 2011. Bioflocculation of microalgae and bacteria combined with flue gas to improve sewage treatment. New Biotechnol. 29:23-31.   DOI
114 Vandenbruwane, J., De Neve, S., Qualls, R. G., Salomez, J. & Hofman, G. 2007. Optimization of dissolved organic nitrogen (DON) measurements in aqueous samples with high inorganic nitrogen concentrations. Sci. Total Environ. 386:103-113.   DOI
115 Ibrahim, M. B. M. & Gamila, H. A. 2004. Algal bioassay for evaluating the role of algae in bioremediation of crude oil: II. freshwater phytoplankton assemblages. Bull. Environ. Contam. Toxicol. 73:971-978.   DOI
116 Im, C. -S., Zhang, Z., Shrager, J., Chang, C. -W. & Grossman, A. R. 2003. Analysis of light and CO2 regulation in Chlamydomonas reinhardtii using genome-wide approaches. Photosynth. Res. 75:111-125.   DOI
117 Jacques, N. R. & McMartin, D. W. 2009. Evaluation of algal phytoremediation of light extractable petroleum hydrocarbons in subarctic climates. Remediat. J. 20:119-132.   DOI
118 Ji, M. -K., Kabra, A. N., Choi, J., Hwang, J. -H., Kim, J. R., Abou-Shanab, R. A. I., Oh, Y. -K. & Jeon, B. -H. 2014a. Biodegradation of bisphenol A by the freshwater microalgae Chlamydomonas mexicana and Chlorella vulgaris. Ecol. Eng. 73:260-269.   DOI
119 Ji, Y., Hu, W., Li, X., Ma, G., Song, M. & Pei, H. 2014b. Mixotrophic growth and biochemical analysis of Chlorella vulgaris cultivated with diluted monosodium glutamate wastewater. Bioresour. Technol. 152:471-476.   DOI
120 Kabra, A. N., Ji, M. -K., Choi, J., Kim, J. R., Govindwar, S. P. & Jeon, B. -H. 2014. Toxicity of atrazine and its bioaccumulation and biodegradation in a green microalga, Chlamydomonas mexicana. Environ. Sci. Pollut. Res. Int. 21:12270-12278.   DOI
121 Jin, Z. P., Luo, K., Zhang, S., Zheng, Q. & Yang, H. 2012. Bioaccumulation and catabolism of prometryne in green algae. Chemosphere 87:278-284.   DOI
122 Mishra, V. 2014. Biosorption of zinc ion: a deep comprehension. Appl. Water Sci. 4:311-332.   DOI
123 Mandal, A. K., Sarma, P. M., Singh, B., Jeyaseelan, C. P., Channashettar, V. A., Lal, B. & Datta, J. 2012. Bioremediation: an environment friendly sustainable biotechnological solution for remediation of petroleum hydrocarbon contaminated waste. ARPN J. Sci. Technol. 2:1-12.
124 Miazek, K., Remacle, C., Richel, A. & Goffin, D. 2014. Effect of lignocellulose related compounds on microalgae growth and product biosynthesis: a review. Energies 7:4446-4481.   DOI
125 Mishra, A. & Malik, A. 2013. Recent advances in microbial metal bioaccumulation. Crit. Rev. Environ. Sci. Technol. 43:1162-1222.   DOI
126 Mitra, M., Lato, S. M., Ynalvez, R. A., Xiao, Y. & Moroney, J. V. 2004. Identification of a new chloroplast carbonic anhydrase in Chlamydomonas reinhardtii. Plant physiol. 135:173-182.   DOI
127 Mofeed, J. & Mosleh, Y. Y. 2013. Toxic responses and antioxidative enzymes activity of Scenedesmus obliquus exposed to fenhexamid and atrazine, alone and in mixture. Ecotoxicol. Environ. Saf. 95:234-240.   DOI
128 Prajapati, S. K., Kumar, P., Malik, A. & Vijay, V. K. 2014b. Bioconversion of algae to methane and subsequent utilization of digestate for algae cultivation: a closed loop bioenergy generation process. Bioresour. Technol. 158:174-180.   DOI
129 Prajapati, S. K., Kaushik, P., Malik, A. & Vijay, V. K. 2013a. Phycoremediation and biogas potential of native algal isolates from soil and wastewater. Bioresour. Technol. 135:232-238.   DOI
130 Prajapati, S. K., Kaushik, P., Malik, A. & Vijay, V. K. 2013b. Phycoremediation coupled production of algal biomass, harvesting and anaerobic digestion: possibilities and challenges. Biotechnol. Adv. 31:1408-1425.   DOI
131 Ramanan, R., Kim, B. -H., Cho, D. -H., Oh, H. -M. & Kim, H. -S. 2016. Algae-bacteria interactions: evolution, ecology and emerging applications. Biotechnol. Adv. 34:14-29.   DOI
132 Gobler, C. J., Renaghan, M. J. & Buck, N. J. 2002. Impacts of nutrients and grazing mortality on the abundance of Aureococcus anophagefferens during a New York brown tide bloom. Limnol. Oceanogr. 47:129-141.   DOI
133 Gattullo, C. E., Bährs, H., Steinberg, C. E. W. & Loffredo, E. 2012. Removal of bisphenol A by the freshwater green alga Monoraphidium braunii and the role of natural organic matter. Sci. Total Environ. 416:501-506.   DOI
134 Giordano, M., Beardall, J. & Raven, J. A. 2005. CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu. Rev. Plant Biol. 56:99-131.   DOI
135 Glibert, P. M., Wazniak, C. E., Hall, M. R. & Sturgis, B. 2007. Seasonal and interannual trends in nitrogen and brown tide in Maryland’s coastal bays. Ecol. Appl. 17(Suppl. 5):S79-S87.   DOI
136 Gonçalves, A. L., Simões, M. & Pires, J. C. M. 2014. The effect of light supply on microalgal growth, CO2 uptake and nutrient removal from wastewater. Energy Convers. Manag. 85:530-536.   DOI
137 Gould, W. D., King, M., Mohapatra, B. R., Cameron, R. A., Kapoor, A. & Koren, D. W. 2012. A critical review on destruction of thiocyanate in mining effluents. Miner. Eng. 34:38-47.   DOI
138 Morales-Sánchez, D., Tinoco-Valencia, R., Kyndt, J. & Martinez, A. 2013. Heterotrophic growth of Neochloris oleoabundans using glucose as a carbon source. Biotechnol. Biofuels 6:100.   DOI
139 Morales-Sánchez, D., Martinez-Rodriguez, O. A., Kyndt, J. & Martinez, A. 2015. Heterotrophic growth of microalgae: metabolic aspects. World J. Microbiol. Biotechnol. 31:1-9.   DOI
140 Mallick, N. 2006. Immobilization of microalgae. In Guisan, J. M. (Ed.) Immobilization of Enzymes and Cells. Humana Press, Totowa, NJ, pp. 373-391.
141 Seitzinger, S. P. & Sanders, R. W. 1997. Contribution of dissolved organic nitrogen from rivers to estuarine eutrophication. Mar. Ecol. Prog. Ser. 159:1-12.   DOI
142 Rawat, I., Kumar, R. R., Mutanda, T. & Bux, F. 2011. Dual role of microalgae: phycoremediation of domestic waste-water and biomass production for sustainable biofuels production. Appl. Energy 88:3411-3424.   DOI
143 Sattayatewa, C., Arnaldos, M. & Pagilla, K. 2011. Measurement of organic nitrogen and phosphorus fractions at very low concentrations in wastewater effluents. Water Environ. Res. 83:675-683.
144 Sattayatewa, C., Pagilla, K., Pitt, P., Selock, K. & Bruton, T. 2009. Organic nitrogen transformations in a 4-stage Bardenpho nitrogen removal plant and bioavailability/biodegradability of effluent DON. Water Res. 43:4507-4516.   DOI
145 Sforza, E., Cipriani, R., Morosinotto, T., Bertucco, A. & Giacometti, G. M. 2012. Excess CO2 supply inhibits mixotrophic growth of Chlorella protothecoides and Nannochloropsis salina. Bioresour. Technol. 104:523-529.   DOI
146 Seitzinger, S. P. & Sanders, R. W. 1999. Atmospheric inputs of dissolved organic nitrogen stimulate estuarine bacteria and phytoplankton. Limnol. Oceanogr. 44:721-730.   DOI
147 Semple, K. T., Cain, R. B. & Schmidt, S. 1999. Biodegradation of aromatic compounds by microalgae. FEMS Microbiol. Lett. 170:291-300.   DOI
148 Serejo, M. L., Posadas, E., Boncz, M. A., Blanco, S., García-Encina, P. & Muñoz, R. 2015. Influence of biogas flow rate on biomass composition during the optimization of biogas upgrading in microalgal-bacterial processes. Environ. Sci. Technol. 49:3228-3236.   DOI
149 Shen, Y. -F., Liu, L., Gong, Y. -X., Zhu, B., Liu, G. -L. & Wang, G. -X. 2014. Potential toxic effect of trifloxystrobin on cellular microstructure, mRNA expression and antioxidant enzymes in Chlorella vulgaris. Environ. Toxicol. Pharmacol. 37:1040-1047.   DOI
150 Shi, W., Wang, L., Rousseau, D. P. L. & Lens, P. N. L. 2010. Removal of estrone, 17α-ethinylestradiol, and 17β-estradiol in algae and duckweed-based wastewater treatment systems. Environ. Sci. Pollut. Res. 17:824-833.   DOI
151 Shi, X. -M., Zhang, X. -W. & Chen, F. 2000. Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources. Enzyme Microb. Technol. 27:312-318.   DOI
152 Simsek, H., Kasi, M., Wadhawan, T., Bye, C., Blonigen, M. & Khan, E. 2012. Fate of dissolved organic nitrogen in two stage trickling filter process. Water Res. 46:5115-5126.   DOI