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Microalgal bioremediation of CO2, nutrients, endocrine disruptors, hydrocarbons, pesticides, and cyanide compounds 

have evaluated comprehensively. Microalgal mitigation of nutrients originated from municipal wastewaters, surface 

waters, and livestock wastewaters has shown great applicability. Algal utilization on secondary and tertiary treatment 

processes might provide unique and elegant solution on the removing of substances originated from various sources. 

Microalgae have displayed 3 growth regimes (autotrophic, heterotrophic, and mixotrophic) through which different or-

ganic and inorganic substances are being utilized for growth and production of different metabolites. There are still some 

technology challenges requiring innovative solutions. Strain selection investigation should be directed towards identi-

fication of algal that are extremophiles. Understanding and manipulation of metabolic pathways of algae will possible 

unfold solution to utilization of algae for mitigation of dissolve organic nitrogen in wastewaters. 
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INTRODUCTION

Bioremediation is a human-engineered process which 

involves use of microorganism to remove or metabolize 

toxic, mutagenic, and carcinogenic substances to non-

toxic compounds. Bioremediation has been recognized 

as efficient, cost effective, and a suitable alternative to 

conventional methods for removing contaminant (Man-

dal et al. 2012). Efficiency of bioremediation depends on 

the type of microorganism being used and is greatly af-

fected by the environmental conditions. Based on their 

inherent biological characteristics, different microorgan-

isms metabolize substance at different degree and have 

been used for bioremediation process. There are several 

reports available in the literature targeting bioremedia-

tion of wastewater by use of fungi (Mishra and Malik 

2013, Kaushik and Malik 2015), bacteria (Wasi et al. 2013), 

and microalgae (Prajapati et al. 2013a). In contrast to oth-

er organism, microalgae are unique to have the ability to 

do photosynthesis like plant and to utilize organic / inor-

ganic carbon substrate, the process termed as phycore-

mediation. Microalgae can populate reaction site quickly 

and enhance bio-remediation efficiency. Photosynthetic 

ability of microalgae makes them suitable for CO2 mitiga-

tion. Moreover, microalgae proliferate in wastewater by 

utilizing the essential nutrients especially nitrogen and 
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sive update and quick reference material. In this work, 

we have concisely put together several research achieve-

ments and gaps that are widely spread among literatures. 

MICROALGAE GROWTH REGIMES 

Different species of microalgae can undergo autotro-

phic (photosynthesis), heterotrophic (substrate depen-

dent) and / or mixotrophic (auto and heterotrophic) 

modes of nutrition depending on availability of organic 

carbon (substrate), CO2, and light (Fig. 1). Microalgae can 

also evolve to become specialized autotrophs or hetero-

trophs through long-term shifts in the growth conditions 

(Liang et al. 2009, Bell 2013). Microalgae contain multiple 

metabolic pathways for different growth regimes. Some 

microalgae can switch between these growth regimes 

(one is active while the other is inactive) at a particular 

period depending on the condition while other micro-

algae are capable of using the pathways simultaneously 

(Perez-Garcia et al. 2011). Presence of high concentra-

tion of CO2 enhances photosynthesis of microalgae but 

undermine utilization of organic carbon substrate pos-

sibly due to retardation of respiration. Besides, absence 

of light during dark cycles lead to utilization of organic 

carbon substrate (Sforza et al. 2012). Microalgae has ex-

hibited diverse metabolic pathways when experiencing 

hypoxic (low O2 concentration) or anoxic (extremely low 

O2 concentration) conditions in aquatic system (Yang et 

al. 2015). 

Understanding microalgal growth regimes tremen-

dously helps in optimization studies on environmental 

remediation and metabolites production. Heterotrophic 

culturing of microalgae give room for treatment of waste-

water containing carbon compounds while autotrophic 

culturing allows treatment of flue gas containing CO2. 

However, microalgae cultured under natural environ-

ment undergoes both; high rate of heterotrophic at night 

and autotrophic during the day. Some researchers have 

equally mimicked this process in photobioreactor by 

controlling provision of carbon substrate, light, and CO2 

(Im et al. 2003, Xia and Gao 2005, Miazek et al. 2014).

Heterotrophic growth regime

Heterotrophic growth in microalgae is nonphotosyn-

thetic / dark metabolism and involves utilization of or-

ganic carbon substrates for energy production and other 

metabolic activities (Morales-Sánchez et al. 2015). Het-

erotrophic culturing of microalgae is easier to operate, 

phosphorous compounds present in the wastewater.

Microalgae have been reported to utilize several com-

pounds, including pesticides, hydrocarbons, endocrine 

disruptors, and cyanides as carbon and nitrogen sourc-

es. In addition, microalgal cell wall is made up of car-

bohydrate structures capable of bio-absorption of toxic 

chemical agents in wastewater. Therefore, microalgae are 

potentially suitable for mitigation of several compounds 

including nitrogen, phosphorous, heavy metals, and oth-

er polluting compounds in wastewaters. Proper manage-

ment of microalgal bioremediation in aquatic ecosystem 

is crucial since controlled microalgal treatment success-

fully remove the nutrients from numerous sources in-

cluding; domestic and industrial wastewater discharges, 

livestock and poultry feedlots, atmospheric deposition, 

surface runoff from agricultural lands that use animal 

manure and inorganic fertilizers as a nutrient source, and 

other natural and anthropogenic sources. Improper land 

applications and storage of solid and slurry manure have 

a profound effect on the environment since they enhance 

nutrient transportation to aquatic systems. Therefore, it 

can be explained that nutrients that originated from do-

mestic and livestock wastewaters are the most important 

N sources in receiving waters and its reduction are crucial 

for especially nutrient sensitive surface waters. Microal-

gae, having ability to grow mixotrophically, are efficiently 

used for remediation wastewater which is rich in inor-

ganic and organic nutrients and substrates. 

The degradation of environment reduces the quality 

of life and may cause several disease including cancer on 

human being (Ferrer-i-Carbonell and Gowdy 2007). In 

order to combat this problem, researchers have mapped 

out numerous strategies involving (1) identification and / 

or mitigation of factors that exhibit negative environmen-

tal impact and (2) development and / or improvement of 

alternative activities that are environmentally friendly. 

Among numerous alternative approaches and controlled 

measures, bio-remediation has been identified as one of 

the most viable and feasible environmental control mea-

sure. 

Many review works have focused on different roles of 

microalgae for environmental remediation. For instance, 

Wang et al. (2008) reviewed bio-mitigation of CO2 by mi-

croalgae, Yang et al. (2015) reviewed microalgae growth 

under anoxic and hypoxic conditions, Wang et al. (2014) 

reviewed microalgae cultivation in photobioreactor, 

Singh and Singh (2014) reviewed effect of CO2 on micro-

algal growth potential. Recently, there has been tremen-

dous growth in works related to this area of research thus 

initiated this review work that will serve as a comprehen-
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Autotrophic growth Mixotrophic growth Heterotrophic growth

ton 1994). Urea and other organic nitrogen compounds 

are also suitable for heterotrophic growth regime of mi-

croalgae. Hence, during the growth in wastewater which 

are rich in organics, probably dark in color and have am-

ple inorganic nutrient present (e.g., agro industry based 

effluents), microalgae will show heterotrophic regime. 

Autotrophic growth regime

Autotrophic growth of microalgae involves photosyn-

thetic reduction cycle-light reaction, CO2 concentration, 

and dark reaction (Kruse et al. 2005). Briefly, microalgal 

pigments (chlorophylls, phycobilins, and carotenoids) 

absorb photon to generate electrons, which are trans-

ferred in to PSI, II and cytochrome b6f complexes, ADP+ 

and NADP+ are converted to ATP and NADPH, respec-

tively. The ATP and NADPH are used to drive biochemi-

cal reaction during the dark reaction for CO2 assimilation 

through Calvin Benson cycle in the chloroplast (Wang et 

al. 2014) (Fig. 2). The diffusion rate of CO2 in water and 

that from bicarbonate degradation in stroma is very low. 

Concentration of CO2 provides adequate amounts of 

CO2 to stroma in chloroplast and reduces O2 hindrance 

on ribulose-1,5-bisphosphate carboxylase / oxygenase 

(RuBisCO) (Nelson et al. 2008). Microalgae concentrate 

CO2 using carbonic anhydrase, inorganic carbon trans-

porters, sequestered RuBisCOs in elevated CO2 micro-

compartment and carboxylation mechanisms (CAM and 

produces increased cell mass, leads to high growth rates, 

produces high amounts of metabolites, enables mono-

culturing and low cost operation and construction of in-

frastructure (Perez-Garcia et al. 2011). The heterotrophic 

metabolic pathway entails three major steps: (1) uptake 

/ assimilation, (2) activation and transformation, and (3) 

storage / utilization of metabolites (Morales-Sánchez et 

al. 2015). Uptake of carbon source like glucose requires 

symporter system–a cytoplasmic membrane bond pro-

tein (Morales-Sánchez et al. 2013) but other carbon 

sources (e.g., glycerol) do not as they easily diffuse into 

the cell (Perez-Garcia et al. 2011). Then carbon source 

undergoes glycolysis (Embden-Meyerhof pathway and 

pentose phosphate pathway), tricarboxylic acid cycle, 

and glyoxylate cycle pathways. The products are carbon 

skeleton metabolites such as fatty acid, intracellular poly-

saccharide, proteins, etc. The details of reactions flow / 

pathways are presented in Fig. 2. Microalgae used nitro-

gen for synthesis of amino acids during heterotrophic 

growth regime. Nitrogen sources for microalgae cultur-

ing are ammonium, nitrate, nitrite, urea and amino acids, 

peptone, purines, and yeast extract, etc. (Chen and Chen 

2006). Ammonium is most preferred due to less energy is 

required for its uptake (Shi et al. 2000). However, several 

reports have shown that nitrate assimilation in microal-

gae is inhibited by factors like light (Morris 1974), pres-

ence of heavy metals above 150 µM (Devriese et al. 2001) 

as well as presence of ammonium (Cannons and Pendle-

Fig. 1. Microalgal growth regimes under different environmental conditions.
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inorganic nutrients and biodegradable organic carbon 

source. In such wastewater, microalgae usually grow in 

mixotrophically. The mixotrophic growth regime involves 

simultaneous utilization of both inorganic and organic 

carbon substrate (Cerón-García et al. 2013). Mixotrophic 

microalgae have cellular apparatus for heterotrophic and 

autotrophic metabolism. Mixotrophic culture of microal-

gae resulted in higher growth rate, yield of metabolites, 

than auto- and hetero-trophic (Ogbonna et al. 2002, 

Das et al. 2011). A recent study has reported higher bio-

mass production through mixotrphic microalgal growth 

wastewater supplemented with various carbon sources 

(Bhatnagar et al. 2011). Mixotropic is usually a comple-

mentary (Ogbonna et al. 2002, Fernández Sevilla et al. 

2004) and a synergetic mechanism of auto- and hetero-

trophic (Cheirsilp and Torpee 2012). However, other re-

searches have shown that microalgae generate higher 

energy in heterotrophic growth regime than in the case 

of mixotrophic condition (Yang et al. 2000, Hong and Lee 

2007, Perez-Garcia et al. 2011). There are many internal 

controls and factors that regulate the rate at which each 

metabolic pathway proceeds. Microalgae respiration 

and photosynthesis activities are interconnected as cel-

lular organelles communicate and exchange by-products 

(Yang et al. 2015), for instance (1) utilization of sugar / 

polysaccharide produced in chloroplasts through photo-

synthesis by mitochondria, (2) acquiring of ATP produce 

C4-photosynthesis) (Giordano et al. 2005, Wang et al. 2011, 

Baba and Shiraiwa 2012). Microalgal carbonic anhydrases 

(Table 1) are zinc-metalloenzymes responsible for rapid 

inter-conversion (CO2 + H2O ↔ HCO3
- + H+) of inorganic 

carbon species (Moroney et al. 2011). Dissolved inorganic 

carbon transporters facilitate uptake of inorganic carbon 

and CO2 (Wang et al. 2011). Inorganic carbon transport-

ers (Pollock et al. 2004, Ohnishi et al. 2010) include HLA3 

at plasma membrane, LCIA at chloroplast membrane and 

CCP1 and 2 at chloroplast. Rhesus proteins also function 

as channels for CO2 in microalgae (Soupene et al. 2002) 

and that Rhesus-1 protein is a bidirectional channel for 

the CO2 in Chlamydomonas reinhardtii (Soupene et al. 

2004). Several wastewaters, such as agricultural runoff, 

dairy farm effluents, and anaerobically digested manure 

are rich in inorganic nutrients but have low or no organ-

ic carbon (Prajapati et al. 2014a, Choudhary et al. 2015, 

2016). For remediation of such wastewaters, addition of 

external carbon source is crucial, if microbes (other than 

microalgae), are being used. However, microalgae can 

efficiently remediate such wastewater without need of 

external carbon source as they can sequester CO2 from 

environment through autotrophic growth. 

Mixotrophic growth regime 

Range of wastewater contain adequate amount of both 

Table 1. Locations and roles of carbonic anhydrase in microalgae

Carbonic 
anhydrase            Location Role Reference

α-CAH1 Periplasmic space Facilitate the movement of CO2 across the plasma membrane Moroney and Ynalvez (2007)

α-CAH2 Periplasmic space Facilitate the movement of CO2 across the plasma membrane Moroney and Ynalvez (2007)

α-CAH3 Thylakoid lumen To provide CO2 to RuBisCO Sinetova et al. (2012)

β-CAH4 Mitochondria Not known (but implicated in pH buffering in mitochondria 
and in anapleurotic reactions)

Eriksson et al. (1998)

β-CAH5 Mitochondria Not known (but implicated in pH buffering in mitochondria 
and in anapleurotic reactions)

Eriksson et al. (1998)

β-CAH6 Chloroplast stroma Recapturing CO2 effluxes from the thylakoid lumen and in 
helping to maintain a high concentration of inorganic 
carbon in the stroma

Mitra et al. (2004)

β-CAH7 Chloroplast Not known Moroney and Ynalvez (2007)

β- CAH8 Periplasm Facilitate entering of inorganic carbon into cell Moroney and Ynalvez (2007)

β-CAH9 Cytoplasm Enhance CO2 accumulation in the cytoplasm Moroney and Ynalvez (2007)

γ-CAG1 Mitochondria Not available (possible for production of inorganic carbon 
from CO2 released during respiration in mitochondria)

Cardol et al. (2005),  
Moroney et al. (2011)

γ-CAG2 Mitochondria Not available (possible for production of inorganic carbon 
from CO2 released during respiration in mitochondria)

Cardol et al. (2005),  
Moroney et al. (2011)

γ-CAG3 Mitochondria Not available (possible for production of inorganic carbon 
from CO2 released during respiration in mitochondria)

Cardol et al. (2005),  
Moroney et al. (2011)
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(Jacob-Lopes et al. 2009), and Chlorella PY-ZU1 (Cheng et 

al. 2013a). All mutagenesis studies of microalgae report-

ed increase in CO2 tolerance and fixation (Lee et al. 2002, 

Li et al. 2011, 2015, Kao et al. 2012b, Cheng et al. 2013b). 

Microalgae have shown promising potential for reduc-

tion of CO2 in flue gas (Borkenstein et al. 2011, Chiu et 

al. 2011, Li et al. 2011, Cheng et al. 2014, 2015) and for si-

multaneously production of neutral lipid. Culture system 

can be combined wastewater treatment and make use 

impure CO2 gas (Chinnasamy et al. 2010, Li et al. 2011). 

Several reports have highlighted the advantages (in terms 

of higher biomass yield and rate of pollutant removal) of 

coupled process of wastewater treatment with CO2 from 

waste gases including flue gas (Kumar et al. 2011, Van Den 

Hende et al. 2011, Prajapati et al. 2013a). Moreover, CO2 

fraction of the biogas can also be used as carbon source 

for microalgal culturing at large scale (Kao et al. 2012a, 

Serejo et al. 2015).

Phycoremediation of wastewater nutrients

Introducing abundant nutrients into biochemical cy-

cles through agricultural practices, urbanization, and in-

dustrialization resulted in nutrient-enrich-water-bodies 

and caused dissolved oxygen depletion and eutrophica-

tion. Wastewater treatment can be achieved when it is 

used for culturing of microalgae by utilizing the nutrients.

Removal of inorganic nutrients. Nitrogen and 

phosphorous are primary nutrients for algae and are 

transformed from one form to another. The wastewaters 

generated through various sources, particularly, livestock 

wastewater (Choudhary et al. 2016), agricultural runoff 

(Vymazal and Březinová 2015) and digested manure (Pra-

japati et al. 2014b), are usually rich in N and P. In the recent 

studies, removal of inorganic nutrient including N and P, 

has been reported in the range of 80-100 by use of pure 

and mixed algal cultures (Prajapati et al. 2013a, 2013b, 

Choudhary et al. 2016). Further, use of immobilized algae 

for removal of inorganic nutrients from wastewater is also 

a cost effective approach that it can replace the difficult 

process of microalgal biomass harvesting from the 

suspended culture (Mallick 2006). Many other microalgae 

species have equally been reported to treat wastewater 

from different sources and different operation modes 

(Table 2). The results showed that microalgae were able 

to reduce, with different efficiency, the total nitrogen, 

inorganic nitrogen compounds in wastewater and make 

the wastewater more suitable for safe discharge. 

in mitochondria by chloroplasts when the rate of ATP 

generation in photophosphorylation is lower than the 

rate of ATP utilization in RuBisCO, and (3) utilization and 

removal of cellular O2 during respiration in mitochondria 

thus enhance efficiency of photosynthesis as are result of 

decrease in possibility of photoreduction by PSI (Dang et 

al. 2014, Yang et al. 2015). While cultivating microalgae 

in open ponds or photobioreactor, part of the culture 

remains unexposed to light. If the adequate amount of 

organic carbon and nutrients are present, mixotrophic 

growth may dominant in these regions having no or lim-

ited light availability (Ji et al. 2014b, Perez-Garcia and 

Bashan 2015). However, sometimes it is difficult to differ-

entiate the mixotrphic growth from the synergic growth 

of microalgae and the native bacteria of the wastewater 

system (Fig. 1). It is well reported that the microalgae and 

the bacteria in the wastewater grow in a synergic relation-

ship through exchange of nutrients, CO2 and O2 (Rawat 

et al. 2011, Ramanan et al. 2016). Hence, apart from the 

mixotrophic growth, synergic growth also results in high-

er rate of nutrient / pollutant removal and biomass pro-

duction during bioremediation. 

ENVIRONMENTAL REMEDIATION BY MICROAL-
GAE 

Bio-mitigation of CO2 using microalgae through 
autotrophic growth 

Control of increasing atmospheric concentration of 

CO2 is achievable by algal-induced CO2 fixation (Alpert et 

al. 1992). Researches in this area focused on strain selec-

tion, culture condition optimization, adaptive evolution, 

and mutation study (López et al. 2013). Microalgae are 

divided into (1) CO2 sensitive (intolerance) species inhib-

ited by <2-5% CO2, (2) CO2 tolerant species that can cope 

with 5-20% CO2, and (3) extreme CO2 tolerant species that 

tolerate 20-100% CO2 (Solovchenko and Khozin-Gold-

berg 2013). High CO2 cause high ATP generation, shut-

down of CO2-concentrating mechanisms, upregulation 

of H+-ATPases, alkalization of medium and adjustment 

of membranes’ fatty acid composition (Solovchenko and 

Khozin-Goldberg 2013). During autotrophic and mixo-

trophic processing, increase in CO2 concentration in me-

dium caused microalgae to accumulate lipid and poly-

unsaturated fatty acid (Tang et al. 2011) and stop organic 

substrate utilization (Sforza et al. 2012). Increase in light 

enhance microalgal CO2 sequestering in Chlorella vul-

garis (Gonçalves et al. 2014), Alphanothece microscopica 
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microorganism. However, studies have shown otherwise 

(Caperon et al. 1979, Bronk et al. 1994, 2010) and the 

microalgae roles in DON removal directly or indirectly. 

Overall, DON from urban runoff, animal feedlot runoff, and 

other autochthonous production are readily bioavailable 

to bacteria and algae, unlike DON from forest, wetlands, 

agricultural runoff, lagoons, and wastewater treatment 

plant effluents (Seitzinger and Sanders 1997, 1999, 

Bronk et al. 2010). Previous investigations proved that at 

least 50-85% of the refractory portion of DON became 

biodegradable and / or bioavailable to living organisms 

in water ecosystems when the optimum environmental 

conditions are met (Koopmans and Bronk 2002, Pehliv-

Bioremediation of dissolved organic nitrogen. 

Dissolved organic nitrogen (DON) is another crucial 

N source for algal species (Gobler et al. 2002, Glib-

ert et al. 2007) and its structural composition is source 

dependent. DON (include urea, amino acids, amino 

sugars, proteins, nucleic acids, fulvic acids, humic acids, 

and a variety of uncharacterized components) comprises 

a great proportion of total dissolve nitrogen in rivers, 

lakes, and marine ecosystem. The fraction of DON in 

surface waters is higher than other constituents in the N 

pools, such as particulate organic nitrogen, ammonium, 

nitrate, and nitrite (Berman and Bronk 2003). Initially, 

DON was believed to be unavailable for microalgae and 

Table 2. Literature review on bioremediation of pesticides, endocrine disruptors, and hydrocarbon using microalgae

Pollutants Microalgae Reference

Pesticides 
Dimethomorph, pyrimethanil, isoproturon Scenedesmus obliquus, Scenedesmus quadricauda Dosnon-Olette et al. (2010)
Fluroxypyr Chlamydomonas reinhardtii Zhang et al. (2011)
Isoproturon Chlamydomonas reinhardtii Bi et al. (2012)
Prometryne Chlamydomonas reinhardtii Jin et al. (2012)
Fenhexamid, atrazine Scenedesmu obliquus Mofeed and Mosleh (2013)
Atrazine Chlamydomonas mexicana Kabra et al. (2014)
Mesotrione Microcystis sp., Scenedesmus quadricauda Ni et al. (2014)
Acephate, imidacloprid Chlamydomonas mexicana Kumar et al. (2011)

Endocrine disruptors
Nonylphenol, octylphenol Scenedesmus obliquus Zhou et al. (2013)
β-Estradiol, 17α-ethinylestradiol Selenastrum capricornutum Perron and Juneau (2011)
β-Estradiol, 17α-ethinylestradiol, bisphenol A Chlamydomonas reinhardtii Hom-Diaz et al. (2015)
17α-estradiol, estrone, 17β-estradiol, estriol Scenedesmus dimorphus Zhang et al. (2014)
Bisphenol A Monoraphidium braunii Gattullo et al. (2012)
Biophenol A Stephanodiscus hantzschii Li et al. (2009)
17α-ethinylestradiol, 17β-estradiol, natural 

hormones estrone
Anabaena cylindrica, Chlorococcus, Spirulina plat

ensis, Chlorella, Scenedesmus quadricauda, and 
Anaebena var.

Shi et al. (2010)

4-(1,1,3,3-tetramethylbutyl) phenol, 
technical-nonylphenol, 4-n-nonylphenol, 
bisphenol A 

Algae mixture (mostly Chlorophyceae class and 
cyanobacteria

Abargues et al. (2013)

Bisphenol A Chlorella fisca Hirooka et al. (2003)
Biophenol A Chlamydomonas Mexicana, Chlorella vulgaris Ji et al. (2014a)

Hydrocarbons
Aliphatic and polycyclic aromatic Prototheca zopfii Ueno et al. (2006)
Polycyclic aromatic Prototheca zopfii Ueno et al. (2007)
n-Alkanes Prototheca zopfii Suzuki and Yamaya (2005)
n-Alkanes and polycyclic aromatic Scenedesmus obliquus, Nitzschia linearis Gamila and Ibrahim (2004)
Crude oil 7 microalgae isolated from Nile River Ibrahim and Gamila (2004)
Phenanthrene and fluoranthene Skeletonema costatum, Nitzschia sp. Hong et al. (2008),  

Tang et al. (2010)
Light extractable petroleum hydrocarbons Algal-bacterial solution and algal solution prepared by 

UV inhibition of bacterial growth
Jacques and McMartin  

(2009)
Aliphatic and aromatic Microalgal-bacterial consortium containing 

Scenedesmus obliquus
Tang et al. (2010)

Phananthrene Microalgal-bacterial consortium containing Chlorella 
sorokiniana and Pseudomonas migulae

Muñoz et al. (2003)
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gae species. Although growth of microalgae could be 

initially retarded by cyanide, some microalgae species 

acclimatized quickly. Algae is capable of withstanding 

higher (up to 400 mg L-1) cyanide concentration (Gurbuz 

et al. 2002), an advantage over bacteria since bacteria that 

can only withstand maximum of 300 mg L-1 (Adams et al. 

2001). Currently, there is no report on molecular study of 

metabolism of cyanide in microalgae. Presumably, simi-

lar to other microorganisms, microalgae utilized cyanide 

through series of enzymatic reactions for bioconversion 

into simple organic or inorganic molecules. Vanelslander 

et al. (2011) reported production of a diverse mixture of 

iodinated and brominated metabolites including bro-

mine cyanide and iodine cyanide by diatom Nitzschia 

cf pellucida. Numerous enzymes that are responsible 

for metabolism of cyanide compounds have been iden-

tified in plants, fungi, and bacteria. Hydrolytic pathway 

involves cyanide hydratase, nitrile hydratase, thiocyanate 

hydrolase, nitrilase, and cyanidase; oxidative pathway 

involves cyanide monooxygenase, cyanide cyanase, and 

cyanide dioxygenase; reductive pathway involves enzyme 

nitrogenase; substitution / transfer pathway involves 

mercaptopyruvate sulfurtransferase and rhodanese while 

syntheses pathway involves β-cyanoalanine synthase, 

and γ-cyano-α-aminobutyric acid synthase (Gupta et al. 

2010, Gould et al. 2012). However, none of the aforemen-

tioned enzymes have been reportedly present in microal-

gae. Besides, microalgae have been shown to metabolize 

cyanide from wastewater. Microalgae assimilated cya-

nides compounds as source of carbon or nitrogen (Gupta 

et al. 2010). Additional work is needed to investigate the 

cyanide metabolic pathway in microalgae. 

Bioremediation of pesticides

Utilization of pesticides is common agricultural prac-

tice to increase food production, but when overused, 

pesticides become harmful to soil, aquatic ecosystem, 

and human health (Zhang et al. 2011). Similarly, residue 

of pesticides on plant materials, soils, water bodies found 

their ways in to animals and human systems (Kannan et 

al. 1999). Microalgal treatment of water bodies has been 

identified as a very suitable approach for bioremediation 

of pesticides (Table 2). 

Fresh water microalgae have exhibited different ef-

ficiencies for pesticides removal from wastewater (Dos-

non-Olette et al. 2010). Fluorxypyr and isoproturon were 

rapidly accumulated into the microalgae C. reinhardtii 

cell matrix (Zhang et al. 2011). Studies have equally 

shown possibility of microalgae to biodegrade some pes-

anoglu and Sedlak 2004, Urgun-Demirtas et al. 2008, 

Sattayatewa et al. 2009, Simsek et al. 2012). In addition, 

photochemical decomposition of DON can stimulate 

algal growth indirectly by releasing low molecular weight 

labile compounds, such as urea, amino acids, and 

ammonium (Bushaw-Newton and Moran 1999, Vähätalo 

and Zepp 2005, Vähätalo and Järvinen 2007). 

There is no direct method available to measure DON, 

however, it can be determined from the mass-balance 

equation of nitrogen and the accuracy of measurement 

can be further improved by using pretreatment method 

which consequently minimized dissolve inorganic nitro-

gen and maximized DON level in the wastewater sample 

(Crumpton et al. 1992, Vandenbruwane et al. 2007, Sat-

tayatewa et al. 2011). Bioavailable DON (ABDON) is the 

portion of DON which can be up taken by algae or algae 

+ bacteria (Urgun-Demirtas et al. 2008, Sattayatewa et al. 

2009, Simsek et al. 2012). ABDON evaluate the potential 

environmental effect of wastewater-derived DON to river 

and estuaries and provides a better understanding for the 

impact of DON in aquatic environment. Previous studies 

have mostly applied algae Selenastrum capricornutum to 

determine and removal of wastewater ABDON (Pehliva-

noglu and Sedlak 2004, Urgun-Demirtas et al. 2008, Sat-

tayatewa et al. 2009, Simsek et al. 2012). However, the role 

of native bacteria in removal of ABDON through the syn-

ergic growth with microalgae (Muñoz and Guieysse 2006, 

Alcántara et al. 2015) cannot be neglected. 

For successful reduction of DON in wastewater, low 

molecular weight, light, and ability of microalgae to syn-

thesis protease are crucial factors (Langheinrich 1995, 

Bronk et al. 2010). While DON has been widely studied in 

municipal wastewater, there are limited studies in animal 

wastewater. As of the authors’ knowledge, data on ABDON 

in animal wastewaters is unavailable or very limited.

Biodegradation of cyanide compounds

Cyanides are toxic compounds containing carbon-

nitrogen radicals (CN-) (e.g., hydrogen cyanide, sodium 

cyanide, potassium cyanide, and thiocyanates) and origi-

nate from manufacturing companies such as metal fin-

ishing, gold ore processing, plastic manufacturing, food 

processing, and steel production (Knowles and Bunch 

1986, Gould et al. 2012). Biological methods, including 

use of microalgae, for removal of tightly bonded cyanide 

compounds from wastewater is cost effective and more 

efficient compared to chemical and physical counter-

parts (Gurbuz et al. 2009). Ability to withstand and / or 

utilize cyanide in wastewater varies among different al-



Hammed et al.   Microalgal Growth Regime and Remediation

197 http://e-algae.org

dark condition (Hirooka et al. 2005). 

The possible processes for bioremediation of endo-

crine disruptors in water are sorption, biodegradation, 

and photolytic degradation (Shi et al. 2010). Rate of biore-

mediation of endocrine disruptors, in algae system, var-

ies among different algae species and inversely propor-

tional to molecular weight of the endocrine disruptors (Ji 

et al. 2014a, Hom-Diaz et al. 2015). More studies on strain 

selection is required in order to identify microalgae with 

high bioremediation properties against endocrine dis-

ruptors. Likewise, other conditions (temperature, treat-

ment time, presence of light and concentration, and type 

of endocrine disruptors) that affect bioremediation of 

endocrine disruptors need attention in future researches.

Bioremmediation of hydrocarbons

Bioremmediation has been identified as most suit-

able method to combat hydrocarbon contamination of 

soil and water as a result of industrial discharges (Sub-

ashchandrabose et al. 2013). Microalgae, as a member 

of microbial community, plays significant role toward 

bioremediation of toxic compounds including hydrocar-

bon. Microalgae has shown ability to produce enzymes 

capable of degrading hydrocarbon (Chekroun et al. 2014). 

Earlier studies on microalgal remediation of hydrocarbon 

polluted environment have proven that several species of 

microalgae are capable of utilizing hydrocarbons as car-

bon source (Semple et al. 1999). The most popular hydro-

carbon degrading microalgae is Prototheca zopfii and has 

been investigated in cell free and immobilized systems 

(Suzuki and Yamaya 2005, Ueno et al. 2006, 2007, de-

Bashan and Bashan 2010). Immobilization of microalgae 

reduced lag growth phase associated with biodegrada-

tion of n-alkanes. The immobilized thermotolerant strain 

selectively degraded aliphatic hydrocarbon in the mixed 

hydrocarbon substrate unlike the nonthermotolerant 

strain (Ueno et al. 2006). Microalgae have different affin-

ity for degradation of n-alkanes and polycyclic aromatic 

hydrocarbons (Gamila and Ibrahim 2004). Scenedesmus 

obliquus showed greater affinity toward degradation of 

polycyclic hydrocarbons than n-alkanes, unlike Nitzschia 

linearis that exhibited higher preference for degradation 

of n-alkanes than polycyclic hydrocarbons. Also, seven 

microalgae isolated from Nile river exhibited different 

potentials when tested for bioremediation of crude oil 

(Ibrahim and Gamila 2004). Tang et al. (2010) and Hong 

et al. (2008) showed that degradation and accumulation 

abilities of Nitzschia sp. were higher than those of Skel-

etonema costatum and that it is easier to degrade fluoran-

ticides. Microalgae exhibited different level of toxicologi-

cal effects with respect to different pesticides. Most of the 

reports showed induction of oxidative responses by the 

microalgae in the presence of high concentration of pes-

ticides. In addition, cell morphology was altered and cell 

photosynthetic apparatus were disrupted. The following 

toxicology reactions: decrease in soluble protein and to-

tal antioxidant content, increase in superoxide dismutase 

and peroxidase activity, reduction of transcription of 

photosynthetic genes and one energy gene and cellular 

structural damage (Shen et al. 2014). Esperanza et al. 

(2015) showed that C. reinhardtii, subjected to subleth-

al concentration of atrazine for 3 and 24 h, experienced 

changed in gene implicated in amino acid catabolism 

and respiratory cellular process. It was suggested that, 

photosynthesis was inhibited and the cell was forced to 

seek heterotrophic metabolism in order to survive. Ability 

to withstand certain concentration of specific pesticides 

varies among different species of microalgae. Microalgae 

are not only capable of bioaccumulation of pesticides, 

they can also biodegrade them when pesticides are pre-

sented in sublethal concentration. However, microalgal 

metabolic pathway for bioremediation of pesticides is 

still an area to be explored in future researches. 

Bioremediation of endocrine disruptors

Endocrine disruptors are a group of compounds with 

estrogenic activities. They have been found in wastewa-

ters, and also impacted several health issues in living 

organisms (Hom-Diaz et al. 2015). Endocrine disruptors 

causes morphological alterations, fertility reduction, in-

terference in sex differentiation, enhancing growth of 

MCF-7 human breast cancer cell and mutagenic action 

on RSa human cells (Gattullo et al. 2012). Many studies 

on bioremediation of wastewater containing endocrine 

disruptors using microalgae have been conducted (Nadal 

et al. 2006, Della Greca et al. 2008, Li et al. 2009, Shi et al. 

2010, Gattullo et al. 2012, Zhou et al. 2013, Hom-Diaz et 

al. 2015). Microalgae can tolerated high concentration of 

endocrine disruptors, therefore, they are suitable for bio-

remediation of endocrine disruptors (Perron and Juneau 

2011). Abargues et al. (2013) showed that aerated system 

was more efficient for removal of micropollutants while 

unaerated system was only suitable for removal of 4-n-

nonylphenol. In another study, Chlorella fisca was able to 

remove most of bisphenol A in presence of light. Almost 

all the bisphenol A was removed under continuous light, 

about 82% of bisphenol removed under light : dark (8 : 16) 

condition while 42% of bisphenol A was removed under 
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in the industrial effluents are harmful for microalgae and 

may result in the failure of entire wastewater treatment 

systems (Chekroun and Baghour 2013, Mishra 2014). 

Moreover, though microalgae have been reported to 

have active role in degradation of pesticides and cyanide 

compounds, the concentration above tolerance levels be-

come lethal to most of the microalgae. However, immobi-

lized microalgae can be used to overcome the inhibition 

due to presence of heavy metals (Mallick 2002). Hence, 

it is obvious that special care shall be given for selection 

of particular microalgal strain for given wastewater re-

mediation. Moreover, there is urgent need of developing 

methodology for determination and removal of antimi-

crobial and toxic compound prior to microalgal growth 

in the wastewater. 

CONCLUSION

Microalgal growth regimes and bioremediation of CO2, 

nutrients, cyanide, pesticides, endocrine disruptors, and 

hydrocarbons have been well reviewed and acknowl-

edged. A number of methods have been developed to 

remove wastes and toxic contaminants; however, micro-

algal remediation is a promising and cost effective way to 

remove pollutants. Microalgae are an abundantly pres-

ent biological agent in the nature and have been identi-

fied as one of the most viable and feasible environmen-

tal control methods. They are taxonomically diverse and 

contain multiple metabolic pathways for different growth 

regimes. Strain selection has been widely investigated, 

little attentions has been drawn to microalgae that are 

extremophiles. Additionally, engineering of metabolic 

pathways using biotechnology techniques is a promising 

research opportunity and shall form the body of future 

researches. This technique should be applied efficiently 

towards utilization of microalgae to rid wastewater from 

DON. Hence, understanding the growth regimes of mi-

croalgae help to optimize environmental remediation 

and metabolites production. 
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