• Title/Summary/Keyword: Aldehyde oxidase

Search Result 93, Processing Time 0.033 seconds

Effect of Circadian Rhythms on the Toluene Metabolism in Rats (흰쥐에 있어서 Toluene 대사에 미치는 주.야 시차의 영향)

  • 류종일;윤종국;신중규
    • Biomedical Science Letters
    • /
    • v.5 no.1
    • /
    • pp.67-74
    • /
    • 1999
  • To investigate the effect of the circadian variations on the toluene metabolism, 50% toluene in olive oil (0.2 m1/100 g body weight) was intraperitoneally administered to the rats every other day for 6 days both in the night; 24:00 and the day; 12:00. Each group of animals was sacrificed at 8 hr after last injection of toluene. Hepatic microsomal aniline hydroxylase activity was more increased in control rats of night phase than those of day phase. On the other hand, the activities of hepatic benzylalcohol dehydrogenase in control rats of night phase showed the similiar value with that in those of day phase and in case of toluene treatment, these enzyme activities in rats of night phase were rather more decreased than those of day phase. Furthermore, hepatic benzaldehyde dehydrogenase activities were more or less higher in the control rats of night phase than those of day phase and by toluene treatment, enzyme activities of rats of night phase were somewhat decreased than those of day phase. in vitro, benzylalcohol or benzaldehyde inhibited the activities of benzylalcohol or aldehyde dehydrngenase prepared from the rats liver supematant. There were no differences in urinary hippuric acid contents between the night phase and day phase both in the control and toluene treated group. The increasing rate of liver weight per body weight (%), serum xanthine oxidase activities were higher in rats of night phase than in those of day phase by toluene treatment. In conclusion, these results indicate that the producing rate of benzylalcohol and benzaldehyde from toluene may be higher in rats of night phase than those of day phase.

  • PDF

A Study on the Effects of Magnetic Field and BEP on Hyperlipidemia and Enzymatic Activities in Rats (자기장(磁氣場) 및 BEP 조사(照射)가 식이성(食餌性) 고지혈증(高脂血症)이 유발(誘發)된 흰쥐에 미치는 영향(影響)에 대(對)한 연구(硏究))

  • Koh, Kwang-chan;Lee, Cheol-wan
    • Journal of Haehwa Medicine
    • /
    • v.8 no.1
    • /
    • pp.559-592
    • /
    • 1999
  • It has been known that Ki(氣) energy is very effective on many adult diseases. Oriental Medicine has acknowledged Ki as an existing reality and investigated its effects on the body. However, the existence of Ki has not been fully explained. In order to find a conclusive evidence on the existence of Ki, this experiment was done to study the mutual relationship of Ki with a magnetic field and BEP (biological energy projector). The BEP apparatus was irradiated under the magnetic field on rats in the hyperlipidemic induced state. Following criterias were measured in this experiment: weight change, weight of the visceral organs, serum, hepatic lipid peroxide, bleeding time, tissue factor, and etc. The following results were obtained in this study: 1. The weight of rat significantly decreased in the magnetic field treated group and radically reduced in the group treated with both magnetic field and BEP. 2. The weight of liver, heart, and kidney increased in both the magnetic field treated group and magnetic field+BEP group compared to the normal group, but decreased in comparison to the control group. No changes were witnessed in the weight of spleen. 3. Serum and hepatic total cholesterol, total lipid, and lipid peroxide level significantly decreased in both magnetic field treated group and magnetic field+BEP treated group, while lipase activity has increased noticeably. 4. Serum HDL showed a significant increase in both magnetic field treated group and magnetic field+BEP treated group compared to the control group, while LDL and VLDL level decreased significantly. 5. A bleeding time significantly increased in both magnetic field treated group and magnetic field+BEP treated group compared to the control group. A tissue factor value of the lung decreased in the magnetic field treated group and magnetic field+BEP treated groups while increased in the control group. 6. Serum and hepatic lipid peroxide and glutathione level were significantly decreased in the magnetic field treated group and magnetic field+BEP treated group, while hepatic glutathione level was significantly increased compared to the control group. 7. A significant increase was found in the serum hydroxyl radical and SOD activity in the dietary hyperlipidemic rats, and significant decrease was found in the serum lipid peroxide content and superoxidase activity. 8. Hepatic cytosolic enzyme xanthine oxidase and aldehyde oxidase showed a significant decrease in the magnetic field treated group and magnetic field+BEP treated group. Through the above experimental results, one can suggest that the magnetic field with BEP can suppress hyperlipidemia and boost lipid metabolism and restructuring a lipid in liver, which increases the function of liver. To conclude, BEP is considered to show more potent effects under the exposure of magnetic field because magnetic field seems to increase the flow of Ki in the body.

  • PDF

Preventive Effects of Lycopene-Enriched Tomato Wine against Oxidative Stress in High Fat Diet-Fed Rats

  • Kim, A-Young;Jeon, Seon-Min;Jeong, Yong-Jin;Park, Yong-Bok;Jung, Un-Ju;Choi, Myung-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.2
    • /
    • pp.95-103
    • /
    • 2011
  • This study was performed to investigate the antioxidant mechanism of tomato wine with varying lycopene content in rats fed a high fat diet (HFD). Male Sprague-Dawley rats were randomly divided into five groups (n=10 per group) and fed an HFD (35% of total energy from fat) plus ethanol (7.2% of total energy from alcohol), tomato wine with varying lycopene content (0.425 mg%, 1.140 mg% or 2.045 mg% lycopene) or an isocaloric control diet for 6 weeks. Mice fed HFD plus ethanol significantly increased erythrocyte hydrogen peroxide and thiobarbituric acid reactive substances (TBARS) levels with increases in activities of erythrocyte antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and glutathione reductase (GR) compared to pair-fed rats. Supplementation of tomato wine with varying lycopene content decreased ethanol-mediated increases of erythrocyte lipid peroxidation and antioxidant enzyme activities in HFD-fed rats, and tomato wine with higher lycopene appeared to be more effective. Tomato wine also dose-dependently lowered TBARS levels with decreased pro-oxidant enzyme, xanthine oxidase (XOD) activity in plasma of HFD-fed rats. In contrast to erythrocytes, the inhibitory effects of tomato wine on hepatic lipid peroxidation were linked to increased hepatic antioxidant enzymes (SOD and CAT) and alcohol metabolizing enzyme (alcohol dehydrogenase and aldehyde dehydrogenase) activities. There were no significant differences in hepatic XOD and cytochrome P450-2E1 activities among the groups. Together, our data suggest that tomato wine fortified with lycopene has the potential to protect against ethanol-induced oxidative stress via regulation of antioxidant or pro-oxidant enzymes and alcohol metabolizing enzyme activities in plasma, erythrocyte and liver.

Hexanal Vapor Induced Resistance against Major Postharvest Pathogens of Banana (Musa acuminata L.)

  • Dhakshinamoorthy, Durgadevi;Sundaresan, Srivignesh;Iyadurai, Arumukapravin;Subramanian, Kizhaeral Sevathapandian;Janavi, Gnanaguru Janaki;Paliyath, Gopinathan;Subramanian, Jayasankar
    • The Plant Pathology Journal
    • /
    • v.36 no.2
    • /
    • pp.133-147
    • /
    • 2020
  • Hexanal, a C-6 aldehyde has been implicated to have antimicrobial properties. Hence, this study was conducted to determine the antifungal activities of hexanal vapor against major postharvest pathogens of banana viz., Colletotrichum gloeosporioides and Lasiodiplodia theobromae. The pathogens were cultured in vitro and exposed to hexanal vapor at 600, 800, 1,000 and 1,200 ppm. Mycelial growth of both fungal pathogens were inhibited completely at 800 ppm and the incidence of anthracnose and stem-end rot diseases reduced by 75.2% and 80.2%, respectively. The activities of peroxidase, polyphenol oxidase, phenylalanine ammonia-lyase and glucanase had transiently increased in hexanal vapor treated banana by 5 to 7 days and declined thereafter. Postharvest treatment of banana with hexanal vapor resulted in phospholipase D inhibition and also resulted in cell wall thickening of the treated fruit, which impeded the penetration of the pathogenic spores. This was further confirmed by scanning electron micrographs. The defense-related protein intermediaries had increased in hexanal vapor treated banana fruit, which suggests induced resistance against C. gloeosporioides and L. theobromae, via., the phenylpropanoid pathway which plays a significant role in hindering the pathogen quiescence. Delayed ripening due to inhibition of phospholipase D enzyme, inhibition of mycelial growth and induced systemic resistance by defense enzymes collectively contributed to the postharvest disease reduction and extended shelf life of fruit.

Antioxidant Activities of Extracts from Fruiting Bodies of Mushrooms (버섯추출물의 항산화활성에 관한 연구)

  • Park, Sang-Shin;Yu, Kook-Hyun;Min, Tae-Jin
    • The Korean Journal of Mycology
    • /
    • v.26 no.1 s.84
    • /
    • pp.69-77
    • /
    • 1998
  • Antioxidant activities of 80% ethanol extracts of 63 species of mushroom fruiting bodies were investigated. The ethanol extracts from Daedalea dickinsii, Armillariella mellea, and Fomitella fraxinea showed markedly inhibition on lipid peroxidation in rat liver microsome. The extracts from Daedaleopsis tricolor, Trametes suaveolens, Armillariella mellea, Trichaptium abietinum, Daedalea dickinsii, Fomitella fraxinea, Tylophilus neofelleus, Boletellus obscurecoccineus, and Xerocomus subtomentosus significantly inhibited the hepatic aldehyde oxidase activity, and the extracts from Daedaleopsis tricolor, Armillariella mellea, Daedalea dickinsii, and Fomitella fraxinea slightly stimulated the hepatic SOD activity. These results suggest that Daedalea dickinsii, Armillariella mellea, and Fomitella fraxinea contain the bioactive substances for natural antioxidant and may be useful for development of antioxidant from mushrooms.

  • PDF

Compound K, a ginsenoside metabolite, plays an antiinflammatory role in macrophages by targeting the AKT1-mediated signaling pathway

  • Lee, Jeong-Oog;Choi, Eunju;Shin, Kon Kuk;Hong, Yo Han;Kim, Han Gyung;Jeong, Deok;Hossain, Mohammad Amjad;Kim, Hyun Soo;Yi, Young-Su;Kim, Donghyun;Kim, Eunji;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.43 no.1
    • /
    • pp.154-160
    • /
    • 2019
  • Background: Compound K (CK) is an active metabolite of ginseng saponin, ginsenoside Rb1, that has been shown to have ameliorative properties in various diseases. However, its role in inflammation and the underlying mechanisms are poorly understood. In this report, the antiinflammatory role of CK was investigated in macrophage-like cells. Methods: The CK-mediated antiinflammatory mechanism was explored in RAW264.7 and HEK293 cells that were activated by lipopolysaccharide (LPS) or exhibited overexpression of known activation proteins. The mRNA levels of inflammatory genes and the activation levels of target proteins were identified by quantitative and semiquantitative reverse transcription polymerase chain reaction and Western blot analysis. Results: CK significantly inhibited the mRNA expression of inducible nitric oxide synthase and tumor necrosis factor-${\alpha}$ and morphological changes in LPS-activated RAW264.7 cells under noncytotoxic concentrations. CK downregulated the phosphorylation of AKT1, but not AKT2, in LPS-activated RAW264.7 cells. Similarly, CK reduced the AKT1 overexpression-induced expression of aldehyde oxidase 1, interleukin-$1{\beta}$, interferon-${\beta}$, and tumor necrosis factor-${\alpha}$ in a dose-dependent manner. Conclusion: Our results suggest that CK plays an antiinflammatory role during macrophage-mediated inflammatory actions by specifically targeting the AKT1-mediated signaling pathway.

2-DE and MALDI-TOF MS-based identification of bovine whey proteins in milk collected soon after parturition

  • Lee, Jae Eun;Lin, Tao;Kang, Jung Won;Shin, Hyun Young;Lee, Joo Bin;Jin, Dong Il
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.635-643
    • /
    • 2018
  • Bovine milk is widely consumed by humans and is a primary ingredient of dairy foods. Proteomic approaches have the potential to elucidate complex milk proteins and have been used to study milk of various species. Here, we performed a proteomic analysis using 2-dimensional electrophoresis (2-DE) and matrix assisted laser desorption ionization-time of flight mass spectrometer (MALDI-TOF MS) to identify whey proteins in bovine milk obtained soon after parturition (bovine early milk). The major casein proteins were removed, and the whey proteins were analyzed with 2-dimensional polyacrylamide gel electrophoresis (2-D PAGE). The whey proteins (2 mg) were separated by pI and molecular weight across pH ranges of 3.0 - 10.0 and 4.0 - 7.0. The 2-DE gels held about 300 to 700 detectable protein spots. We randomly picked 12 and nine spots that were consistently expressed in the pH 3.0 - 10.0 and pH 4.0 - 7.0 ranges, respectively. Following MALDI-TOF MS analysis, the 21 randomly selected proteins included proteins known to be present in bovine milk, such as albumin, lactoferrin, serum albumin precursor, T cell receptor, polymeric immunoglobulin receptor, pancreatic trypsin inhibitor, aldehyde oxidase and microglobulin. These proteins have major functions in immune responses, metabolism and protein binding. In summary, we herein identified both known and novel whey proteins present in bovine early milk, and our sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed their expression pattern.

A Review of Sirtuin Inhibitors in Therapeutics, Pharmaceutics, and Plant Research (치료제, 조제학 및 식물을 위한 서투인 억제제의 유용성)

  • Lee, Yew
    • Journal of Life Science
    • /
    • v.30 no.1
    • /
    • pp.96-105
    • /
    • 2020
  • Sirtuin inhibitors are pharmaceutically and therapeutically valuable compounds that inhibit sirtuin, a type III histone deacetylase. Synthetic sirtuin inhibitors were discovered and characterized using cell-based screens in yeast (Saccharomyces cerevisiae) and have been used in the study of aging, carcinogenesis, and diabetes, all of which are related to sirtuin function. For medical applications, synthetic inhibitors have been further developed for increased potency and specificity, including compounds containing nicotinamide, thioacetyl lysine, β-naphthol, and indole derivatives. Suramin, tenovin, and their analogues were developed as a result. Sirtuin inhibitors were found to affect organic development and have been used to genetically modify plants, although a sirtinol-resistant mutation in the biosynthesis of a molybdopterin cofactor for an aldehyde oxidase has been identified. Some natural flavonoids, and catechin and quercetin derivatives also act as sirtuin inhibitors have been studied to identify a more potent inhibitor for therapeutic purposes. In this review, sirtuin is introduced and the therapeutic inhibitors that have been developed are presented, particularly sirtinol which has been used for genetic modification in plants though it was not designed to be so. Sirtuin inhibitors with greater potency and selectivity are required and those developed in pharmaceutics should be used in plant research to identify more authentic sirtuins in plants.

Effects of Pueraria thunbergiana Bentham Water Extracts on Hepatic Alcohol Metabolic Enzyme System In Rats (칡 열수추출물이 흰쥐의 알콜올 대사효소계에 미치는 영향)

  • 김명주;이정수;하오명;장주연;조수열
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.1
    • /
    • pp.92-97
    • /
    • 2002
  • The effects of Pueraria flos (PF) and Pueraria radix (PR) water extract on the hepatic alcohol metabolic enzyme activities were examined in rats that were orally administered ethanol (25% v/v, 5g/kg body weight/day) for 5 weeks. The PF and PR water extract were supplemented in a diet, based on 1.2 g or 2.4 g of raw PF or PR/kg body weight/body. Alcohol administration without the PF or PR supplementation significantly decreased net weight gain, feed intake and feed efficiency ratio. However. both dose of the PF of PR supplementation resulted in significant enhancement of growth and suppression of increased relative weight of liver, brain and heart by alcohol administration. Activities of hepatic alcohol dehydrogenase and microsomal ethanol oxidizing system were higher in the alcohol treated group than in the normal group, while aldehyde dehydrogenase activity was significantly lowered in the alcohol treated group. The hepatic metabolic enzyme activities altered by alcohol administration were normalized by both doses of PF or PR supplement. Hepatic monoamine oxidase activity and hydrogen peroxide, which were significantly higher in the alcohol treated group than in the normal group, were also decreased by the supplementation with either PF or PR. These results indicate that low-or high-supplementation of either water extract PF or PR may alleviate ethanol-induced hepatotoxicity by altering alcohol metabolic enzyme activities.

Effect of Methionine Levels on Brain Lipid Peroxidation in Ethanol-treated Rats of Selenium Deficiency (메티오닌과 셀렌이 에탄올 중독된 흰쥐의 뇌지질과산화에 미치는 영향)

  • 조수열;이미경;박은미;장주연;김명주
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.1
    • /
    • pp.109-115
    • /
    • 1997
  • This study was designed to investigate the effects of methionine(Met) on the activities of brain lipid peroxidation related enzymes in ethanol administrated rats of selenium(Se) deficiency. Male Sprague-Dawley rats were fed Se deficiency diets containing one of the three levels of Met (0, 3, 9g/kg diet) and ethanol(2.5g/kg of body weight) was administrated as 25v/v% ethanol treated groups orally. The rats sacrificed after 5 and 10 weeks of feeding periods. Alcohol dehydrogenase activity was increased in ethanol treated groups and was higher Met normal group than Met deficiency and excessive groups at 5 and 10 weeks dieting. Aldehyde dehydrogenase activity was decreased in ethanol treated groups and significantly decreased in Met deficiency group. Monoamine oxidase activity in brain was increased in ethanol treated groups and was predominently increased in Met deficiency groups. Superoxide dismutase and glutathione peroxidase activities were decreased in ethanol treated groups and tended to increase in proportion to level of dietary methionine. Glutathione S-transferase and catalase activities and lipid peroxide content were increased by ethanol administration and were higher Met deficiency group than normal and excessive groups.

  • PDF