Browse > Article
http://dx.doi.org/10.5352/JLS.2020.30.1.96

A Review of Sirtuin Inhibitors in Therapeutics, Pharmaceutics, and Plant Research  

Lee, Yew (Department of Molecular Biology, Dankook University)
Publication Information
Journal of Life Science / v.30, no.1, 2020 , pp. 96-105 More about this Journal
Abstract
Sirtuin inhibitors are pharmaceutically and therapeutically valuable compounds that inhibit sirtuin, a type III histone deacetylase. Synthetic sirtuin inhibitors were discovered and characterized using cell-based screens in yeast (Saccharomyces cerevisiae) and have been used in the study of aging, carcinogenesis, and diabetes, all of which are related to sirtuin function. For medical applications, synthetic inhibitors have been further developed for increased potency and specificity, including compounds containing nicotinamide, thioacetyl lysine, β-naphthol, and indole derivatives. Suramin, tenovin, and their analogues were developed as a result. Sirtuin inhibitors were found to affect organic development and have been used to genetically modify plants, although a sirtinol-resistant mutation in the biosynthesis of a molybdopterin cofactor for an aldehyde oxidase has been identified. Some natural flavonoids, and catechin and quercetin derivatives also act as sirtuin inhibitors have been studied to identify a more potent inhibitor for therapeutic purposes. In this review, sirtuin is introduced and the therapeutic inhibitors that have been developed are presented, particularly sirtinol which has been used for genetic modification in plants though it was not designed to be so. Sirtuin inhibitors with greater potency and selectivity are required and those developed in pharmaceutics should be used in plant research to identify more authentic sirtuins in plants.
Keywords
Auxin; flavonoid; sirtuin; SIRT inhibitor; therapeutic;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Uciechowska, U., Schemies, J., Neugebauer, R. C., Huda, E. M., Schmitt, M. L., Meier, R., Verdin, E., Jung, M. and Sippl, W. 2008. Thiobarbiturates as SIRT inhibitors: virtual screening, free-energy calculations, and biological testing. Chem. Med. Chem. 3, 1965-1976.   DOI
2 Vergnes, B., Vanhille, L., Ouaissi, A. and Sereno, D. 2005. Stage-specific antileishmanial activity of an inhibitor of SIR2 histone deacetylase. Acta Trop. 94, 107-115.   DOI
3 Villalba, J. M. and Alcain, F. J. 2012. SIRT activators and inhibitors. Biofactors 38, 349-359.   DOI
4 Wang, C., Gao, F., Wu, J., Dai, J., Wei, C. and Li, Y. 2010. Arabidopsis putative deacetylase AtSRT2 regulates basal defense by suppressing PAD4, EDS5 and SID2 expression. Plant Cell Physiol. 51, 1291-1299.   DOI
5 Wang, J., Kim, T. H., Ahn, M. Y., Lee, J., Jung, J. H., Choi, W. S., Lee, B. M., Yoon, K. S., Yoon, S. and Kim, H. S. 2012. Sirtinol, a class III HDAC inhibitor, induces apoptotic and autophagic cell death in MCF-7 human breast cancer cells. Int. J. Oncol. 41, 1101-1109.   DOI
6 Xu, F., Zhang, Q., Zhang, K., Xie, W. and Grunstein, M. 2007. Sir2 deacetylates histone H3 lysine 56 to regulate telomeric heterochromatin structure in yeast. Mol. Cell. 27, 890-900.   DOI
7 Taylor, D. M., Balabadra, U., Xiang, Z., Woodman, B., Meade, S., Amore, A., Maxwell, M. M., Reeves, S., Bates, G. P., Luthi-Carter, R., Lowden, P. A. and Kazantsev, A. G. 2011. A brain-permeable small molecule reduces neuronal cholesterol by inhibiting activity of SIRT 2 deacetylase. ACS Chem. Biol. 6, 540-546.   DOI
8 Yamamoto, H., Schoonjans, K. and Auwerx, J. 2007. SIRT functions in health and disease. Mol. Endocrinol. 21, 1745-1755.   DOI
9 Yuan, H., Wang, Z., Li, L., Zhang, H., Modi, H., Horne, D., Bhatia, R. and Chen, W. 2012. Activation of stress response gene SIRT1 by BCR-ABL promotes leukemogenesis. Blood 119, 1904-1914.   DOI
10 Zeng, W., Dai, X., Sun, J., Hou, Y., Ma, X., Cao, X., Zhao, Y. and Cheng, Y. 2019. Modulation of auxin signaling and development by polyadenylation machinery. Plant Physiol. 179, 686-699.   DOI
11 Zhang, H., Lu, Y., Zhao, Y. and Zhou, D. X. 2016. OsSRT1 is involved in rice seed development through regulation of starch metabolism gene expression. Plant Sci. 248, 28-36.   DOI
12 Zhao, L., Lu, J., Zhang, J., Wu, P. Y., Yang, S. and Wu, K. 2014. Identification and characterization of histone deacetylases in tomato (Solanum lycopersicum). Front Plant Sci. 5, 760.   DOI
13 Zhao, Y., Dai, X., Blackwell, H. E., Schreiber, S. L. and Chory, J. 2003. SIR1, an upstream component in auxin signaling identified by chemical genetics. Science 301, 1107-1110.   DOI
14 Zhong, X., Zhang, H., Zhao, Y., Sun, Q., Hu, Y., Peng, H. and Zhou, D. X. 2013. The rice NAD(+)-dependent histone deacetylase OsSRT1 targets preferentially to stress- and metabolism-related genes and transposable elements. PLoS One 8, e66807.   DOI
15 Kupis, W., Palyga, J., Tomal, E. and Niewiadomska, E. 2016. The role of SIRTs in cellular homeostasis. J. Physiol. Biochem. 72, 371-380.   DOI
16 Kaschani, F. and van der Hoorn, R. 2007. Small molecule approaches in plants. Curr. Opin. Chem. Biol. 11, 88-98.   DOI
17 Kojima, K., Ohhashi, R., Fujita, Y., Hamada, N., Akao, Y., Nozawa, Y., Deguchi, T. and Ito, M. 2008. A role for SIRT1 in cell growth and chemoresistance in prostate cancer PC3 and DU145 cells. Biochem. Biophys. Res. Commun. 373, 423-428.   DOI
18 Konig, A. C., Hartl, M., Pham, P. A., Laxa, M., Boersema, P. J., Orwat, A., Kalitventseva, I., Plochinger, M., Braun, H. P., Leister, D., Mann, M., Wachter, A., Fernie, A. R. and Finkemeier, I. 2014. The Arabidopsis class II SIRT is a lysine deacetylase and interacts with mitochondrial energy metabolism. Plant Physiol. 164, 1401-1414.   DOI
19 Landry, J., Sutton, A., Tafrov, S. T., Heller, R. C., Stebbins, J., Pillus, L. and Sternglanz, R. 2000. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc. Natl. Acad. Sci. USA. 97, 5807-5811.   DOI
20 Langsfeld, E. S., Bodily, J. M. and Laimins, L. A. 2015. The deacetylase SIRT 1 regulates human papillomavirus replication by modulating histone acetylation and recruitment of DNA damage factors NBS1 and Rad51 to viral genomes. PLoS Pathog. 11, e1005181.   DOI
21 Lara, E., Mai, A., Calvanese, V., Altucci, L., Lopez-Nieva, P., Martinez-Chantar, M. L., Varela-Rey, M., Rotili, D., Nebbioso, A., Ropero, S., Montoya, G., Oyarzabal, J., Velasco, S., Serrano, M., Witt, M., Villar-Garea, A., Imhof, A., Mato, J. M., Esteller, M. and Fraga, M. F. 2009. Salermide, a SIRT inhibitor with a strong cancer-specific proapoptotic effect. Oncogene 28, 781-791.   DOI
22 Luthi-Carter, R., Taylor, D. M., Pallos, J., Lambert, E., Amore, A., Parker, A., Moffitt, H., Smith, D. L., Runne, H., Gokce, O., Kuhn, A., Xiang, Z., Maxwell, M. M., Reeves, S. A., Bates, G. P., Neri, C., Thompson, L. M., Marsh, J. L. and Kazantsev, A. G. 2010. SIRT2 inhibition achieves neuroprotection by decreasing sterol biosynthesis. Proc. Natl. Acad. Sci. USA. 107, 7927-7932.   DOI
23 Lerrer, B., Gertler, A. A. and Cohen, H. Y. 2016. The complex role of SIRT6 in carcinogenesis. Carcinogenesis 37, 108-118.   DOI
24 Libro, R., Giacoppo, S., Soundara Rajan, T., Bramanti, P. and Mazzon, E. 2016. Natural phytochemicals in the treatment and prevention of dementia: an overview. Molecules 21, 518.   DOI
25 Lin, S. J., Defossez, P. A. and Guarente, L. 2000. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289, 2126-2128.   DOI
26 Liu, P. Y., Xu, N., Malyukova, A., Scarlett, C. J., Sun, Y. T., Zhang, X. D., Ling, D., Su, S. P., Nelson, C., Chang, D. K., Koach, J., Tee, A. E., Haber, M., Norris, M. D., Toon, C., Rooman, I., Xue, C., Cheung, B. B., Kumar, S., Marshall, G. M., Biankin, A. V. and Liu, T. 2013. The histone deacetylase SIRT2 stabilizes Myc oncoproteins. Cell Death Differ. 20, 503-514.   DOI
27 Liu, X., Wei, W., Zhu, W., Su, L., Xiong, Z., Zhou, M., Zheng, Y. and Zhou, D. X. 2017. Histone deacetylase AtSRT1 links metabolic flux and stress response in arabidopsis. Mol. Plant 10, 1510-1522.   DOI
28 Marmorstein, R. 2001. Structure of histone deacetylases: insights into substrate recognition and catalysis. Structure 9, 1127-1133.   DOI
29 Michan, S. and Sinclair, D. 2007. SIRTs in mammals: insights into their biological function. Biochem. J. 404, 1-13.   DOI
30 Mellini, P., Kokkola, T., Suuronen, T., Salo, H. S., Tolvanen, L., Mai, A., Lahtela-Kakkonen, M. and Jarho, E. M. 2013. Screen of pseudopeptidic inhibitors of human SIRTs 1-3: two lead compounds with antiproliferative effects in cancer cells. J. Med. Chem. 56, 6681-6695.   DOI
31 Nguyen, H. N., Kim, J. H., Jeong, C. Y., Hong, S. W. and Lee, H. 2013. Inhibition of histone deacetylation alters Arabidopsis root growth in response to auxin via PIN1 degradation. Plant Cell Rep. 32, 1625-1636.   DOI
32 Aquea, F., Timmermann, T. and Arce-Johnson, P. 2010. Analysis of histone acetyltransferase and deacetylase families of Vitis vinifera. Plant Physiol. Biochem. 48, 194-199.   DOI
33 Napper, A. D., Hixon, J., McDonagh, T., Keavey, K., Pons, J. F., Barker, J., Yau, W. T., Amouzegh, P., Flegg, A., Hamelin, E., Thomas, R. J., Kates, M., Jones, S., Navia, M. A., Saunders, J. O., DiStefano, P. S. and Curtis, R. 2005. Discovery of indoles as potent and selective inhibitors of the deacetylase SIRT1. J. Med. Chem. 48, 8045-8054.   DOI
34 Neugebauer, R. C., Uchiechowska, U., Meier, R., Hruby, H., Valkov, V., Verdin, E., Sippl, W. and Jung, M. 2008. Structure-activity studies on splitomicin derivatives as SIRT inhibitors and computational prediction of binding mode. J. Med. Chem. 51, 1203-1213.   DOI
35 North, B. J. and Verdin, E. 2004. SIRTs: Sir2-related NAD-dependent protein deacetylases. Genome Biol. 5, 224.   DOI
36 Ota, H., Tokunaga, E., Chang, K., Hikasa, M., Iijima, K., Eto, M., Kozaki, K., Akishita, M., Ouchi, Y. and Kaneki, M. 2006. Sirt1 inhibitor, Sirtinol, induces senescence-like growth arrest with attenuated Ras-MAPK signaling in human cancer cells. Oncogene 25, 176-185.   DOI
37 Bedalov, A., Gatbonton, T., Irvine, W. P., Gottschling, D. E. and Simon, J. A. 2001. Identification of a small molecule inhibitor of Sir2p. Proc. Natl. Acad. Sci. USA. 98, 15113-15118.   DOI
38 Outeiro, T. F., Kontopoulos, E., Altmann, S. M., Kufareva, I., Strathearn, K. E., Amore, A. M., Volk, C. B., Maxwell, M. M., Rochet, J. C., McLean, P. J., Young, A. B., Abagyan, R., Feany, M. B., Hyman, B. T. and Kazantsev, A. G. 2007. SIRT 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson's disease. Science 317, 516-519.   DOI
39 Pagans, S., Pedal, A., North, B. J., Kaehlcke, K., Marshall, B. L., Dorr, A., Hetzer-Egger, C., Henklein, P., Frye, R., McBurney, M. W., Hruby, H., Jung, M., Verdin, E. and Ott, M. 2005. SIRT1 regulates HIV transcription via Tat deacetylation. PLoS Biol. 3, e41.   DOI
40 Audrito, V., Vaisitti, T., Rossi, D., Gottardi, D., D'Arena, G., Laurenti, L., Gaidano, G., Malavasi, F. and Deaglio, S. 2011. Nicotinamide blocks proliferation and induces apoptosis of chronic lymphocytic leukemia cells through activation of the p53/miR-34a/SIRT1 tumor suppressor network. Cancer Res. 71, 4473-4483.   DOI
41 Biacsi, R., Kumari, D. and Usdin, K. 2008. SIRT1 inhibition alleviates gene silencing in Fragile X mental retardation syndrome. PLoS Genet. 4, e1000017.   DOI
42 Braunstein, M., Rose, A. B., Holmes, S. G., Allis, C. D. and Broach, J. R. 1993. Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev. 7, 592-604.   DOI
43 Carafa, V., Rotili, D., Forgione, M., Cuomo, F., Serretiello, E., Hailu, G. S., Jarho, E., Lahtela-Kakkonen, M., Mai, A. and Altucci, L. 2016. SIRT functions and modulation: from chemistry to the clinic. Clin. Epigenetics 8, 61.   DOI
44 Disch, J. S., Evindar, G., Chiu, C. H., Blum, C. A., Dai, H., Jin, L., Schuman, E., Lind, K. E., Belyanskaya, S. L., Deng, J., Coppo, F., Aquilani, L., Graybill, T. L., Cuozzo, J. W., Lavu, S., Mao, C., Vlasuk, G. P. and Perni, R. B. 2013. Discovery of Thieno[3,2-d]pyrimidine-6-carboxamides as Potent Inhibitors of SIRT1, SIRT2, and SIRT3. J. Med. Chem. 56, 3666-3679.   DOI
45 Dai, X., Hayashi, K., Nozaki, H., Cheng, Y. and Zhao, Y. 2005. Genetic and chemical analyses of the action mechanisms of sirtinol in Arabidopsis. Proc. Natl. Acad. Sci. USA. 102, 3129-3134.   DOI
46 Desantis, V., Lamanuzzi, A. and Vacca, A. 2018. The role of SIRT6 in tumors. Haematologica 103, 1-4.   DOI
47 Dharmasiri, N., Dharmasiri, S. and Estelle, M. 2005. The F-box protein TIR1 is an auxin receptor. Nature 435, 441-445.   DOI
48 Hawse, W. F., Hoff, K. G., Fatkins, D. G., Daines, A., Zubkova, O. V., Schramm, V. L., Zheng, W. and Wolberger, C. 2008. Structural insights into intermediate steps in the Sir2 deacetylation reaction. Structure 16, 1368-1377.   DOI
49 Grozinger, C. M., Chao, E. D., Blackwell, H. E., Moazed, D. and Schreiber, S. L. 2001. Identification of a class of small molecule inhibitors of the SIRT family of NAD-dependent deacetylases by phenotypic screening. J. Biol. Chem. 276, 38837-38843.   DOI
50 Hardtke, C. S. and Berleth, T. 1998. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J. 17, 1405-1411.   DOI
51 He, B., Hu, J., Zhang, X. and Lin, H. 2014. Thiomyristoyl peptides as cell-permeable Sirt6 inhibitors. Org. Biomol. Chem. 12, 7498-7502.   DOI
52 Heger, V., Tyni, J., Hunyadi, A., Horakova, L., Lahtela-Kakkonen, M. and Rahnasto-Rilla, M. 2019. Quercetin based derivatives as SIRT inhibitors. Biomed. Pharmacother. 111, 1326-1333.   DOI
53 Cui, H., Kamal, Z., Ai, T., Xu, Y., More, S. S., Wilson, D. J. and Chen, L. 2014. Discovery of potent and selective SIRT 2 (SIRT2) inhibitors using a fragment-based approach. J. Med. Chem. 57, 8340-8357.   DOI
54 Chen, B., Zang, W., Wang, J., Huang, Y., He, Y., Yan, L., Liu, J. and Zheng, W. 2015. The chemical biology of SIRTs. Chem. Soc. Rev. 44, 5246-5264.   DOI
55 Cheng, Y., Dai, X. and Zhao, Y. 2004. AtCAND1, a HEAT-repeat protein that participates in auxin signaling in Arabidopsis. Plant Physiol. 135, 1020-1026.   DOI
56 Cucurachi, M., Busconi, M., Morreale, G., Zanetti, A., Bavaresco, L. and Fogher, C. 2012. Characterization and differential expression analysis of complete coding sequences of Vitis vinifera L. SIRT genes. Plant Physiol. Biochem. 54, 123-132.   DOI
57 Frye, R. A. 2000. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem. Biophys. Res. Commun. 273, 793-798.   DOI
58 Du, J., Zhou, Y., Su, X., Yu, J. J., Khan, S., Jiang, H., Kim, J., Woo, J., Kim, J. H., Choi, B. H., He, B., Chen, W., Zhang, S., Cerione, R. A., Auwerx, J., Hao, Q. and Lin, H. 2011. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 334, 806-809.   DOI
59 Friden-Saxin, M., Seifert, T., Landergren, M. R., Suuronen, T., Lahtela-Kakkonen, M., Jarho, E. M. and Luthman, K. 2012. Synthesis and evaluation of substituted chroman-4-one and chromone derivatives as SIRT 2-selective inhibitors. J. Med. Chem. 55, 7104-7113.   DOI
60 Frye, R. A. 1999. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (SIRTs) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem. Biophys. Res. Commun. 260, 273-279.   DOI
61 Greiss, S. and Gartner, A. 2009. SIRT/Sir2 phylogeny, evolutionary considerations and structural conservation. Mol. Cells 28, 407-415.   DOI
62 Peck, B., Chen, C. Y., Ho, K. K., Di Fruscia, P., Myatt, S. S., Coombes, R. C., Fuchter, M. J., Hsiao, C. D. and Lam, E. W. 2010. SIRT inhibitors induce cell death and p53 acetylation through targeting both SIRT1 and SIRT2. Mol. Cancer Ther. 9, 844-855.   DOI
63 Perabo, F. G. and Muller, S. C. 2005. New agents in intravesical chemotherapy of superficial bladder cancer. Scand. J. Urol. Nephrol. 39, 108-116.   DOI
64 Pereira, C. V., Lebiedzinska, M., Wieckowski, M. R. and Oliveira, P. J. 2012. Regulation and protection of mitochondrial physiology by SIRTs. Mitochondrion 12, 66-76.   DOI
65 Hu, J., Jing, H. and Lin, H. 2014. SIRT inhibitors as anticancer agents. Future Med. Chem. 6, 945-966.   DOI
66 Heltweg, B., Gatbonton, T., Schuler, A. D., Posakony, J., Li, H., Goehle, S., Kollipara, R., Depinho, R. A., Gu, Y., Simon, J. A. and Bedalov, A. 2006. Antitumor activity of a smallmolecule inhibitor of human silent information regulator 2 enzymes. Cancer Res. 66, 4368-4377.   DOI
67 Hirai, S., Endo, S., Saito, R., Hirose, M., Ueno, T., Suzuki, H., Yamato, K., Abei, M. and Hyodo, I. 2014. Antitumor effects of a SIRT inhibitor, tenovin-6, against gastric cancer cells via death receptor 5 up-regulation. PLoS One 9, e102831.   DOI
68 Hollender, C. and Liu, Z. 2008. Histone deacetylase genes in Arabidopsis development. J. Integr. Plant Biol. 50, 875-885.   DOI
69 Portmann, S., Fahrner, R., Lechleiter, A., Keogh, A., Overney, S., Laemmle, A., Mikami, K., Montani, M., Tschan, M. P., Candinas, D. and Stroka, D. 2013. Antitumor effect of SIRT1 inhibition in human HCC tumor models in vitro and in vivo. Mol. Cancer Ther. 12, 499-508.   DOI
70 Perry, J., Dai, X. and Zhao, Y. 2005. A mutation in the anticodon of a single tRNAala is sufficient to confer auxin resistance in Arabidopsis. Plant Physiol. 139, 1284-1290.   DOI
71 Preyat, N. and Leo, O. 2013. SIRT deacylases: a molecular link between metabolism and immunity. J. Leukoc. Biol. 93, 669-680.   DOI
72 Przemeck, G. K., Mattsson, J., Hardtke, C. S., Sung, Z. R. and Berleth, T. 1996. Studies on the role of the Arabidopsis gene MONOPTEROS in vascular development and plant cell axialization. Planta 200, 229-237.   DOI
73 Pulla, V. K., Alvala, M., Sriram, D. S., Viswanadha, S., Sriram, D. and Yogeeswari, P. 2014. Structure-based drug design of small molecule SIRT1 modulators to treat cancer and metabolic disorders. J. Mol. Graph. Model. 52, 46-56.   DOI
74 Rack, J. G., Morra, R., Barkauskaite, E., Kraehenbuehl, R., Ariza, A., Qu, Y., Ortmayer, M., Leidecker, O., Cameron, D. R., Matic, I., Peleg, A. Y., Leys, D., Traven, A. and Ahel, I. 2015. Identification of a class of protein ADP-Ribosylating SIRTs in microbial pathogens. Mol. Cell. 59, 309-320.   DOI
75 Rahnasto-Rilla, M., Tyni, J., Huovinen, M., Jarho, E., Kulikowicz, T., Ravichandran, S., V, A. B., Ferrucci, L., Lahtela-Kakkonen, M. and Moaddel, R. 2018. Natural polyphenols as SIRT 6 modulators. Sci. Rep. 8, 4163.   DOI
76 Rajabi, N., Galleano, I., Madsen, A. S. and Olsen, C. A. 2018. Targeting SIRTs: substrate specificity and inhibitor design. Prog. Mol. Biol. Transl. Sci. 154, 25-69.   DOI
77 Sacconnay, L., Ryckewaert, L., Randazzo, G. M., Petit, C., Passos Cdos, S., Jachno, J., Michailoviene, V., Zubriene, A., Matulis, D., Carrupt, P. A., Simoes-Pires, C. A. and Nurisso, A. 2016. 5-Benzylidene-hydantoin is a new scaffold for SIRT inhibition: From virtual screening to activity assays. Eur. J. Pharm. Sci. 85, 59-67.   DOI
78 Rine, J. and Herskowitz, I. 1987. Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. Genetics 116, 9-22.   DOI
79 Rotili, D., Tarantino, D., Nebbioso, A., Paolini, C., Huidobro, C., Lara, E., Mellini, P., Lenoci, A., Pezzi, R., Botta, G., Lahtela-Kakkonen, M., Poso, A., Steinkuhler, C., Gallinari, P., De Maria, R., Fraga, M., Esteller, M., Altucci, L. and Mai, A. 2012. Discovery of salermide-related SIRT inhibitors: binding mode studies and antiproliferative effects in cancer cells including cancer stem cells. J. Med. Chem. 55, 10937-10947.   DOI
80 Rumpf, T., Schiedel, M., Karaman, B., Roessler, C., North, B. J., Lehotzky, A., Olah, J., Ladwein, K. I., Schmidtkunz, K., Gajer, M., Pannek, M., Steegborn, C., Sinclair, D. A., Gerhardt, S., Ovadi, J., Schutkowski, M., Sippl, W., Einsle, O. and Jung, M. 2015. Selective Sirt2 inhibition by ligand-induced rearrangement of the active site. Nat. Commun. 6, 6263.   DOI
81 Satoh, A., Brace, C. S., Ben-Josef, G., West, T., Wozniak, D. F., Holtzman, D. M., Herzog, E. D. and Imai, S. 2010. SIRT1 promotes the central adaptive response to diet restriction through activation of the dorsomedial and lateral nuclei of the hypothalamus. J. Neurosci. 30, 10220-10232.   DOI
82 Schlicker, C., Boanca, G., Lakshminarasimhan, M. and Steegborn, C. 2011. Structure-based development of novel SIRT inhibitors. Aging (Albany NY) 3, 852-872.   DOI
83 Smith, B. C. and Denu, J. M. 2007. Mechanism-based inhibition of Sir2 deacetylases by thioacetyl-lysine peptide. Biochemistry 46, 14478-14486.   DOI
84 Huang, L., Sun, Q., Qin, F., Li, C., Zhao, Y. and Zhou, D. X. 2007. Down-regulation of a SILENT INFORMATION REGULATOR2-related histone deacetylase gene, OsSRT1, induces DNA fragmentation and cell death in rice. Plant Physiol. 144, 1508-1519.   DOI
85 Imai, S., Armstrong, C. M., Kaeberlein, M. and Guarente, L. 2000. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403, 795-800.   DOI
86 Sebastian, C., Zwaans, B. M., Silberman, D. M., Gymrek, M., Goren, A., Zhong, L., Ram, O., Truelove, J., Guimaraes, A. R., Toiber, D., Cosentino, C., Greenson, J. K., MacDonald, A. I., McGlynn, L., Maxwell, F., Edwards, J., Giacosa, S., Guccione, E., Weissleder, R., Bernstein, B. E., Regev, A., Shiels, P. G., Lombard, D. B. and Mostoslavsky, R. 2012. The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell 151, 1185-1199.   DOI
87 Shore, D. 2000. The Sir2 protein family: A novel deacetylase for gene silencing and more. Proc. Natl. Acad. Sci. USA. 97, 14030-14032.   DOI
88 Singh, S., Singh, A., Yadav, S., Gautam, V., Singh, A. and Sarkar, A. K. 2017. Sirtinol, a Sir2 protein inhibitor, affects stem cell maintenance and root development in Arabidopsis thaliana by modulating auxin-cytokinin signaling components. Sci. Rep. 7, 42450.   DOI
89 Smith, J. S., Brachmann, C. B., Celic, I., Kenna, M. A., Muhammad, S., Starai, V. J., Avalos, J. L., Escalante-Semerena, J. C., Grubmeyer, C., Wolberger, C. and Boeke, J. D. 2000. A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. Proc. Natl. Acad. Sci. USA. 97, 6658-6663.   DOI
90 Sociali, G., Galeno, L., Parenti, M. D., Grozio, A., Bauer, I., Passalacqua, M., Boero, S., Donadini, A., Millo, E., Bellotti, M., Sturla, L., Damonte, P., Puddu, A., Ferroni, C., Varchi, G., Franceschi, C., Ballestrero, A., Poggi, A., Bruzzone, S., Nencioni, A. and Del Rio, A. 2015. Quinazolinedione SIRT6 inhibitors sensitize cancer cells to chemotherapeutics. Eur. J. Med. Chem. 102, 530-539.   DOI
91 Jiang, Y., Liu, J., Chen, D., Yan, L. and Zheng, W. 2017. SIRT Inhibition: strategies, inhibitors, and therapeutic potential. Trends Pharmacol. Sci. 38, 459-472.   DOI
92 Jackson, M. D., Schmidt, M. T., Oppenheimer, N. J. and Denu, J. M. 2003. Mechanism of nicotinamide inhibition and transglycosidation by Sir2 histone/protein deacetylases. J. Biol. Chem. 278, 50985-50998.   DOI
93 Jiang, H., Khan, S., Wang, Y., Charron, G., He, B., Sebastian, C., Du, J., Kim, R., Ge, E., Mostoslavsky, R., Hang, H. C., Hao, Q. and Lin, H. 2013. SIRT6 regulates TNF-alpha secretion through hydrolysis of long-chain fatty acyl lysine. Nature 496, 110-113.   DOI
94 Jiang, K. and Feldman, L. J. 2005. Regulation of root apical meristem development. Annu. Rev. Cell Dev. Biol. 21, 485-509.   DOI
95 Jung-Hynes, B., Nihal, M., Zhong, W. and Ahmad, N. 2009. Role of SIRT histone deacetylase SIRT1 in prostate cancer. A target for prostate cancer management via its inhibition? J. Biol. Chem. 284, 3823-3832.   DOI
96 Kaluski, S., Portillo, M., Besnard, A., Stein, D., Einav, M., Zhong, L., Ueberham, U., Arendt, T., Mostoslavsky, R., Sahay, A. and Toiber, D. 2017. Neuroprotective functions for the histone deacetylase SIRT6. Cell Rep. 18, 3052-3062.   DOI
97 Kanfi, Y., Naiman, S., Amir, G., Peshti, V., Zinman, G., Nahum, L., Bar-Joseph, Z. and Cohen, H. Y. 2012. The SIRT SIRT6 regulates lifespan in male mice. Nature 483, 218-221.   DOI
98 Suzuki, T., Khan, M. N., Sawada, H., Imai, E., Itoh, Y., Yamatsuta, K., Tokuda, N., Takeuchi, J., Seko, T., Nakagawa, H. and Miyata, N. 2012. Design, synthesis, and biological activity of a novel series of human SIRT-2-selective inhibitors. J. Med. Chem. 55, 5760-5773.   DOI
99 Sussmuth, S. D., Haider, S., Landwehrmeyer, G. B., Farmer, R., Frost, C., Tripepi, G., Andersen, C. A., Di Bacco, M., Lamanna, C., Diodato, E., Massai, L., Diamanti, D., Mori, E., Magnoni, L., Dreyhaupt, J., Schiefele, K., Craufurd, D., Saft, C., Rudzinska, M., Ryglewicz, D., Orth, M., Brzozy, S., Baran, A., Pollio, G., Andre, R., Tabrizi, S. J., Darpo, B., Westerberg, G. and Consortium, P. 2015. An exploratory double-blind, randomized clinical trial with selisistat, a SirT1 inhibitor, in patients with Huntington's disease. Br. J. Clin. Pharmacol. 79, 465-476.   DOI
100 Suzuki, T., Asaba, T., Imai, E., Tsumoto, H., Nakagawa, H. and Miyata, N. 2009. Identification of a cell-active non-peptide SIRT inhibitor containing N-thioacetyl lysine. Bioorg. Med. Chem. Lett. 19, 5670-5672.   DOI
101 Szucko, I. 2016. SIRTs: not only animal proteins. Acta Physiol. Plant. 38, 237.   DOI
102 Tanny, J. C., Dowd, G. J., Huang, J., Hilz, H. and Moazed, D. 1999. An enzymatic activity in the yeast Sir2 protein that is essential for gene silencing. Cell 99, 735-745.   DOI
103 Tasselli, L., Zheng, W. and Chua, K. F. 2017. SIRT6: novel mechanisms and links to aging and disease. Trends Endocrinol. Metab. 28, 168-185.   DOI
104 Tromas, A. and Perrot-Rechenmann, C. 2010. Recent progress in auxin biology. C. R. Biol. 333, 297-306.   DOI