• Title/Summary/Keyword: Alcohol Sensor

Search Result 85, Processing Time 0.024 seconds

Thick-film ammonia gas sensor with high sensitivity and excellent selectivity

  • Lee, Kyuchung;Ryu, Kwang-Ryul;Hur, Chang-Wu
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.1
    • /
    • pp.22-25
    • /
    • 2004
  • A highly sensitive ammonia gas sensor using thick-film technology has been fabricated and examined. The sensing material of the gas sensor is FeOx-$WO_{3}-SnO_{2}$ oxide semiconductor. The sensor exhibits resistance increase upon exposure to low concentration of ammonia gas. The resistance of the sensor is decreased, on the other hand, for exposure to reducing gases such as ethyl alcohol, methane, propane and carbon monoxide. A novel method for detecting ammonia gas quite selectively utilizing a sensor array consisting of an ammonia gas sensor and a compensation element has been proposed and developed. The compensation element is a Pt-doped $WO_{3}-SnO_{2}$gas sensor which shows opposite direction of resistance change in comparison with the ammonia gas sensor upon exposure to ammonia gas. Excellent selectivity has been achieved using the sensor array having two sensing elements.

The Applications of Sol-Gel Derived Tin Oxide Thin Films

  • Park, Sung-Soon;John D. Mackenzie
    • The Korean Journal of Ceramics
    • /
    • v.2 no.1
    • /
    • pp.1-10
    • /
    • 1996
  • Transparent conducting $SnO_2$-based thin films have been coated on float substrates such as fused quartz, and ceramic fiber cloths such as the Nexel and E-glass cloth from tin alkoxides by the sol-gel technique. Also, thin films of alternating layers of $SnO_2$ and $SiO_2$ have been fabricated by dip coating. The sheet resistance and average visible transmittance of the films were investigated in the aspect of the applications as transparent electrodes such as liquid crystal displays, photo-detectors and solar cells. The Nextel and E-glass cloths coated with antimony-doped tin oxide (ATO) had sheet resistance of as low as $20 \;ohm/{\Box}$ and $120ohm/\;{\Box}$, respectively. The promotion effects of additives as $La_2O_3$ and Pt on the ethanol gas sensing properties of the films were investigated in the aspects of the applications as an alcohol sensor and a breath alcohol checker. Possible evidence of quantum well effects in the oxide multilayers of $SnO_2$ and $SiO_2$ was investigated.

  • PDF

C-V Response Properties of Alcohol Vapor Sensors Based on Porous Silicon (다공질 실리콘 알코올 가스 센서의 C-V 응답 특성)

  • Kim, Seong-Jeen;Lee, Sang-Hoon;Choi, Bok-Gil;Sung, Man-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.6
    • /
    • pp.592-597
    • /
    • 2004
  • Porous silicon(PS) has received much attention as a sensitive material of chemical sensors because of its large internal surface area. In this work, we fabricated gas-sensing devices based on the porous silicon layer which could be applicable to the measurement of blood alcohol content(BAC), and estimated their electrical properties. The structure of the sensor is similar to an MIS (metal-insulator-semiconductor) diode and consists of thin Au/oxidized PS/PS/p-Si/Al, where the p-Si substrate is etched anisotropically to reduce the thickness. We measured C-V curves from two types of the samples with the PS layer treated by the different anodization current density of 60 or 100 mA/cm$^2$, in order to compare the sensitivity. As a result, the magnitude and variation of capacitances from the devices with the PS formed under the current density of 100 mA/cm$^2$ were found to be more detectable due to the larger internal surface.

Fabrication of the SnO2 thin-film gas sensors using an R.F. magnetron sputtering method and their alcohol gas-sensing characterization (R.F. Magnetron Sputtering 법을 이용한 SnO2 박막 센서의 제조 및 알콜 감도 특성)

  • Park, Sang-Hyoun;Kang, Ju-Hyun;Yoo, Kwang-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.63-68
    • /
    • 2005
  • The nano-grained Pd or Pt-doped $SnO_{2}$ thin films were deposited on the alumina substrate at ambient temperature or $300^{\circ}C$ by using an R.F. magnetron sputtering system and then annealed at $650^{\cir}C$ for 1 hour or 4 hours in air. The crystallinity and microstructure of the annealed films were analyzed. A grain size of the thin films was 30 nm to 50 nm. As a result of gas sensitivity measurements to an alcohol vapor of $36^{\circ}C$, the 2 wt.% Pt-doped $SnO_{2}$ thin-film sensor deposited at $300^{\circ}C$ and annealed at $650^{\circ}C$ for 4 hours showed the highest sensitivity.

Variation of Gas Selectivity by Silane binders in SWNT Gas sesnsors (SWNT 가스센서에서 실란 바인더에 의한 가스 선택성의 변화)

  • Lee, Ho-Jung;Kim, Seong-Jeen
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.19-19
    • /
    • 2010
  • We suggest CNT-based gas sensors for breath alcohol measurement. The sensors were composed of single-walled carbon nanotubes (SWNTs) thin film on glass substrate with simple process, and the SWNTs thin film as sensing layer was formed by multiple spray-coating with SWNT composites which was well-dispersed, highly controlled and differently functionalized by various binders (TEOS, MTMS, and VTMS) added in ethanol solvent. In this work, three different SWNTs thin films were made to compare their electrical response properties for alcohol vapor. From fabricated sensors, conductance responses were measured and discussed. In the result, our alcohol gas sensors showed an effective selectivity even at room temperature.

  • PDF

A Study on Speed and Changes of Physical Reaction due to Alcohol Intake (혈중알콜농도에 따른 신체반응속도 및 변화연구)

  • Nam, Chul-Hyun
    • Journal of Preventive Medicine and Public Health
    • /
    • v.25 no.2 s.38
    • /
    • pp.141-147
    • /
    • 1992
  • This study was carried out not only to determine blood alcohol levels by time but also to examine the changes of working ability and reaction speed after ingestion of alcohol. Fifteen healthy students aged from 21 to 27 volunteered as subjects for this study, Liguor (Sojoo) in concentration of 25% ethyl alcohol was administrated with the amount of 1ml of ethyl alcohol per kg of body weight to the subjects. The concentration of alcohol in the blood were determined by the 'Alcohol Sensor 100' at 5, 30, 60 and 90 minutes after the administration of alcohol. Also, the choice reactiontest, the eye-hand coordination test and kraepelin test were examined at the same time after checking of alcohol concentration in the blood. The results of this study can be summarized as follows. 1. Mean blood alcohol level changes resulting from administration of 1ml of ethyl alcohol per kg of body weight were $0.16%(160{\pm}57mg/100ml,\;0.10%(100{\pm}42mg/100ml),\;0.08%(80{\pm}36mg/100ml)\;and\;0.03%(30{\pm}24mg/100ml)$ at the 3, 30, 60 and 90 minutes after the administration respectively The peak in the concentration of blood alcohol was 5 miniutes after the ingestion according to alcohol examination by the respiration. 2. As for choice reaction test, reaction times became prolonged as blood alcohol levels increased. The reaction time showed a significant changes when the blood alcohol concentration reached 0.08% or more after alcohol ingestion. 3. In eye and hand coordination test, the accuracy of the performance became decreased as blood alcohol levels increased. The difference of accuracy of the test was significantly shown when alcohol levels in the blood reached 0.08% or more after alcohol intake. 4. As for kraepelin test, the abilities of calculation also became lowered as blood alcohol levels increased. The abilities of calculation differed signigicantly from control group when alchool levels of 0.08% and more.

  • PDF

Effect of $K_2$CO$_3$ on Dangerous Gas Sensing Characteristics of ${\gamma}$-Fe$_2$O$_3$ Sensor. (${\gamma}$-Fe$_2$O$_3$센서의 위험성 가스 감지 특성에 $K_2$CO$_3$가 미치는 영향)

  • 임병오;박영구
    • Journal of the Korean Society of Safety
    • /
    • v.5 no.2
    • /
    • pp.32-39
    • /
    • 1990
  • The ${\gamma}$-Fe$_2$O$_3$ compounds were oxidized in the furance after gas detecting sensor made molding as the Fe$_3$O$_4$ the synthesized Fe$_3$O$_4$, by ferrous sulfate and sodium hydroxide. Their sensities on carbon monoxide, ethyl alcohol and L. P. G. were measured at various temperatures, respectively. And then their electrical resistivities, thermal properties (D.T.A. & T.G.A.), were examined about their having an effet on the gas-sensing in company with the effect of pure ${\gamma}$-Fe$_2$O$_3$ and the detecting sensor ${\gamma}$-Fe$_2$O$_3$, which reacts with $K_2$CO$_3$ in the hydrothermal coundition, and the electrical conductive mechanism was reflected simultaneously. It was observed that the electrical conductivities and response ratios showed highest value at the endothermic temperature part, 300~35$0^{\circ}C$ of D.T.A.―curve. Consequently, the response ratios and response times of the hydrothermal detecting sensor were higher than that of pure detecting sensor, the specific surface areas were the highest at the endothermic range of D.T.A.-curve. These response ratios of detecting sensor for $K_2$CO$_3$, process at hydrothermal condition on carbon monoxide appeared higher than that on ethyl alcohol and in case of L.P.G. last.

  • PDF

Thin-film optical waveguide $K^{+}$-ion sensor using the evanescent field absorption (소산장 흡수를 이용한 박막 광도파로형 칼륨이온센서)

  • Lee, Su-Mi;Koh, Kwang-Nak;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.214-220
    • /
    • 1997
  • A thin film optical waveguide sensor has been developed to measure and analyze quantitatively some inherent optical properties of biochemical substances. In this paper, two different kinds of thickness of thin film waveguide were prepared by RF sputtering of Corning-7059 glass(n = 1.588 at ${\lambda}=\;514nm$, Ar laser) on Pyrex glass substrates. We made a sensing membrane coated on the thin film waveguide with the poly(vinyl chloride-co-vinyl acetate-co-vinyl alcohol) (91 : 3 : 6) copolymer membrane based on $H^{+}$-selective chromoionophore and $K^{+}$-selective neutral ionophore and then proposed the thin film opptical waveguide ion sensor which can select a potassium ion. This sensor based ell the absorbance change by utilizing chromoionophore and neutral ionophore, which changes their absorption spectrum in the UV-vis region upon complexation of the corresponding ionic species, have been reported. The sensitivity dependence of the proposed sensor on interaction length, waveguide thickness, and content of a chromoionophore was investigated. This sensor has the measurement range of $10^{-6}M{\sim}1M$ for $K^{+}$ concentration and 90% response time of duration within 1 min. Also, our thin film optical waveguide sensor using the evanescent field was investigated as compared with conventional transmission sensor or optode sensor by the optical fiber. The sensitivity of thin-film waveguide $K^{+}$ sensor is higher than that of the conventional transmission sensor. The proposed sensor is expected to be useful to biochemical, medical, environmental inspection and so on.

  • PDF

Alcohol Detecting Characteristics of Catalytic Sensor (접촉연소식 센서의 알코올 검지 특성)

  • Kim, Jong-Won;Son, Young-Mok;Sim, Kyu-Sung;Park, Kee-Bae;Lee, Sang-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.32-39
    • /
    • 1994
  • Catalytic combustion type sensor was fabricated for alcohol detection, and its characteristics were tested. When the resistance of Pt coil for pellistor is 2.0 ohm, suggestible input power to bridge circuit was about 300 mW for methanol detection, and in the range from 350 mW to 400 mW for ethanol. Pellistors were prepared by means of impregnating Pt or Pd on the ${\gamma}$-alumina bead for sensing element, and transition metals such as $Co_{3}O_{4}$, $Fe_{2}O_{3}$ for compensating element.

  • PDF