• Title/Summary/Keyword: Alcalase 2.4L

Search Result 38, Processing Time 0.025 seconds

Antihypertensive, Antimicrobial and Antifungal Activities of Buckwheat Hydrolysate (메밀 가수분해물의 항고혈압, 항균 및 항곰팡이 활성)

  • Do, Jeong-Ryong;Heo, In-Sook;Back, Su-Yeon;Yoon, Hye-Sook;Jo, Jin-Ho;Kim, Young-Myoung;Kim, Ki-Ju;Kim, Sang-Kyo
    • Korean Journal of Food Science and Technology
    • /
    • v.38 no.2
    • /
    • pp.268-272
    • /
    • 2006
  • Antibacterial, antifungal, and Angiotensin-I-converting enzyme (ACE) inhibitory activities of buckwheat (Fagopyrum esculentum and F. tataricum) hydrolyzed by Viscozyme L and Alcalase 2.4 L were investigated. The Alcalase 2.4L-hydrolyzed buckwheat showed highest yield of 22.10-24.65%. F. esculentum hydrolysate treated with Viscozyme L from Salmonella typhimurium (clear zone: 3-4.7 mm) and Listeria monocytogenes (clear zone: 4-7.2 mm) showed highest antimicrobial activity among enzymes used. F. esculentum hydrolysate treated with Trichoderma reesei showed strongest antifungal activity among enzymes used (clear zone: 3.7-12 mm). Alcalase 2.4L-hydrolyzed F. esculentum and F. tataricum showed strong ACE inhibitory activities (61.19% and 94.48%, respectively).

Optimization of Alcalase for Krill Byproduct Hydrolysis and Antioxidative Activities by Response Surface Methodology

  • Kim, Kyoung-Myo;Lee, Da-Sun;Nam, Min-Hee;Yoo, Hong-Seok;Kim, Seon-Bong;Chun, Byung-Soo;Lee, Yang-Bong
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.4
    • /
    • pp.316-321
    • /
    • 2010
  • Krill byproduct was hydrolyzed with Alcalase 2.4L to produce functional ingredients for high antioxidative activities against 1,1-dimethyl-2-picryl-hydrazyl (DPPH) radical and Fe. The objective of this study was to investigate the optimum condition for degree of hydrolysis and antioxidative activity of enzymatic hydrolysate produced with the commercial Alcalase using response surface methodology (RSM) with a central composite rotatable design (CCRD). The ranges of independent variables were pH 7.6~10.4 for initial pH and $50.9{\sim}79.1^{\circ}C$ for hydrolysis temperature and their dependent variables were degree of hydrolysis, Brix, amount of phenolic compounds, DPPH-scavenging activity and Fe-chelating activity. RSM with CCRD was well designed to investigate the optimum condition for functional ingredients with high antioxidative activities using Alcalase 2.4L because of their high $R^2$ values of the range of 0.93~0.99 except the $R^2$ value of 0.50 for the amount of total phenolic compounds. The optimum hydrolysis conditions were pH 9.5 and $62^{\circ}C$ for degree of hydrolysis (DH) and pH 9.1 and $64^{\circ}C$ for DPPH-scavenging activity by response surface methodology. The yield of DH and DPPH-scavenging activity were $14.1{\pm}0.5%$ and $10.5{\pm}0.2%$, respectively. It is advantageous to determine the optimum hydrolysis conditions of krill and its by-products for the creation of different kinds of food products, as well as to increase the usage of marine protein sources.

Effect of Enzymatic Hydrolysis by Proteases on Antioxidant Activity of Chungkukjang (단백질 분해 효소 처리가 청국장의 항산화 활성에 미치는 영향)

  • Park, Min-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.2
    • /
    • pp.327-333
    • /
    • 2011
  • Chungkukjang and soybean powder were enzymatically hydrolyzed with 20, 100 and 500 mAU of 3 commercially available proteases (alcalase 2.4L, protamex and neutrase 0.8L) at $50^{\circ}C$ for 120 min. The degree of hydrolysis and antioxidant activities of hydrolysates were comparably evaluated. Alcalase and protamex yielded higher content of peptide compared to neutrase in both Chungkukjang and soybean powder hydrolyzed samples. Both Chungkukjang and soybean hydrolysates showed also greater increases of antioxidant activities compared to those prepared with neutrase. The rates of increment of DPPH, ABTS and hydroxyl radical scavenging activities were similar between Chungkukjang and soybean powder hydrolyzates. These results show that alcalase and protamex are not specific for Chungkukjang but enhance its antioxidant activity.

Effect of Angiotensin-I Converting Enzyme Inhibitory from Hydrolysate of Soybean Protein Isolate (분리대두단백질 가수분해물의 Angiotensin-I Converting Enzyme 저해효과)

  • Back, Su-Yeon;Do, Jeong-Ryong;Do, Gun-Pyo;Kim, Hyun-Ku
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.1
    • /
    • pp.8-13
    • /
    • 2010
  • The angiotensin converting enzyme (ACE) inhibition effect of soybean protein isolate hydrolysate was studied using protease. Soybean protein isolate was hydrolysed by seven enzymes (Alcalase 2.4 L, Flavourzyme 500 MG, GC 106, Multifect Neutral, Neutrase 0.8 L, Papain 30,000 and Protamex), enzyme concentrations (0, 0.5, 1.0 and 1.5%), at various hydrolysis times (0, 1, 2, 3, 4, 5 and 6 hr) and suspension concentrations (1, 5, 7, 10 and 15%). Absorbance at 280 nm, brix and ACE inhibitory activity of soybean protein isolate hydrolysates were investigated. Absorbance at 280 nm and brix of Alcalase 2.4 L treatment were higher than other enzyme treatments. The optimum condition of hydrolysis was Alcalase 2.4 L, 1% enzyme concentration, 5% suspension concentration for 4 hr. $IC_{50}$ value of ACE inhibitory activity of soybean protein isolate hydrolysate was $79.94 {\mu}g/mL$. These results suggest that soybean isolate protein hydrolysate from Alcalase 2.4 L may be of benefit for developing antihypertensive therapeutics.

Protective effect of enzymatic hydrolysates from highbush blueberry (Vaccinium corymbosum L.) against hydrogen peroxide-induced oxidative damage in Chinese hamster lung fibroblast cell line

  • Senevirathne, Mahinda;Kim, Soo-Hyun;Jeon, You-Jin
    • Nutrition Research and Practice
    • /
    • v.4 no.3
    • /
    • pp.183-190
    • /
    • 2010
  • Blueberry was enzymatically hydrolyzed using selected commercial food grade carbohydrases (AMG, Celluclast, Termamyl, Ultraflo and Viscozyme) and proteases (Alcalase, Flavourzyme, Kojizyme, Neutrase and Protamex) to obtain water soluble compounds, and their protective effect was investigated against $H_2O_2$-induced damage in Chinese hamster lung fibroblast cell line (V79-4) via various published methods. Both AMG and Alcalase hydrolysates showed higher total phenolic content as well as higher cell viability and ROS scavenging activities, and hence, selected for further antioxidant assays. Both AMG and Alcalase hydrolysates also showed higher protective effects against lipid peroxidation, DNA damage and apoptotic body formation in a dose-dependent fashion. Thus, the results indicated that water soluble compounds obtained by enzymatic hydrolysis of blueberry possess good antioxidant activity against $H_2O_2$-induced cell damage in vitro.

Iron Binding Peptides from Casein Hydrolysates Produced by Alcalase (Casein으로부터 Alcalase에 의해 생성된 철분결합 Peptide)

  • Choi, In-Wook;Kim, Kee-Sung;Lim, Sang-Dong;Lim, Sin-Won
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.218-223
    • /
    • 1998
  • Casein was hydrolyzed by alcalase to produce iron binding peptide (IBP). IBP was effectively separated from casein hydrolysates by immobilized $Fe^{3+}$ affinity chromatography and further purified by reverse phase chromatography. $25,\;50\;and\;100\;{\mu}g/mL$ of IBP solubilized $4.2,\;5.7\;and\;7.1\;{\mu}g$ of ferric at duodenum condition $(pH\;6,\;37^{\circ}C)$, respectively. According to the result of MALDI analysis, molecular weight of IBP was determined to 2,175 dalton. IBP was mainly composed of proline (24.5 mol%), lysine (15.7 mol%), and glutamine or glutamic acid (14.9 mol%) and its N-terminal sequence was Met-Ala-Pro-Lys-His. According to the information obtained from molecular weight, amino acids composition and N-terminal sequence of IBP, it was evident that IBP was from f102-119 of ${\beta}-casein$.

  • PDF

Effect of Proteases on the Extraction of Crude Protein and Reducing Sugar in Pollen (화분에서의 조단백질 및 환원당 추출시 단백질 분해효소가 미치는 영향)

  • Choi, Su-Jeong;Jeong, Yoon-Hwa
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.8
    • /
    • pp.1353-1358
    • /
    • 2004
  • This study was conducted to increase crude protein and reducing sugar contents in pollen extracts by proteases. Four commercial neutral proteases (Alcalase 2.4L, Protamex, Flavozyme and Protease A) and two alkaline proteases (Protease S and Protease P) were used to prepare acorn and Darae pollen extracts. Contents of moisture, ash, crude protein and crude fat of acorn pollen were 5.2%, 2.7%, 6.2% and 22.3%, respectively, while those of Darae pollen were 5.4%, 2.8%, 1.8% and 27.8%, respectively. Contents of crude protein and reducing sugar in pollen extracts were increased by proteases. Alcalase 2.4L was the most effective in increasing protein contents while Protease A in increasing reducing sugar contents. It is suggested the use of proteases is one of the potential methods for increasing the contents of crude protein and reducing sugar in preparation of pollen extracts.

Angiotensin I Converting Enzyme Inhibitory Activity of Krill (Euphausia superba) Hydrolysate

  • Kim Dong-Soo;Park Douck-Choun;Do Jeong-Ryong
    • Fisheries and Aquatic Sciences
    • /
    • v.5 no.1
    • /
    • pp.21-27
    • /
    • 2002
  • Angiotensin I converting enzyme inhibitory activities of shelled krill (Euphausia superba) hydrolysates by autolysis and by hydrolysis with commercial proteases were analyzed. Among the proteases, Alcalase was the most effective protease for the hydrolysis of krill considering the degree of hydrolysis $(87.5\%)$ and the ACE inhibitory activity $(60\%)$. Four hour hydrolysis suggested as the most suitable and economic. In order to establish the optimum hydrolysis condition of krill, degree of hydrolysis and ACE inhibitory activity as affected by Alcalase concentration and water amount added were statistically analyzed by response surface methodology (RSM). The optimum hydrolysis condition was $2.0\%$ Alcalase hydrolysis in 2 volumes (v/w) of water at $55\% for 4 hr. The hydrolysate prepared from the optimum hydrolysis condition was fractionated by molecular weight. The lower molecular weight fraction showed the higher ACE inhibitory activity. $IC_{50}$ of the fraction under 500 Da was 0.57mg protein/mL.

Enzymatic preparation and antioxidant activities of protein hydrolysates from hemp (Cannabis sativa L.) seeds

  • Hyeon-Ji Yoon;Gyu-Hyeon Park;Yu-Rim Lee;Jeong-Min Lee;Hyun-Lim Ahn;Syng-Ook Lee
    • Food Science and Preservation
    • /
    • v.30 no.3
    • /
    • pp.434-445
    • /
    • 2023
  • Hemp (Cannabis sativa L.) seeds have recently been attracting attention as a new high-value-added food material owing to their excellent nutritional properties, and research on the development of functional food materials using hemp seeds is actively progressing. This study aimed to evaluate the antioxidant properties of hemp seed protein hydrolysates. Protein hydrolysates were prepared from defatted hemp seed powder (HS) by enzymatic hydrolysis using five different proteases (alcalase, bromelain, flavourzyme, neutrase, and papain). 2,4,6-trinitrobenzene sulfonic acid (TNBS) assay and SDS-PAGE analysis revealed that HS showed a high degree of hydrolysis after treatment with each enzyme except papain. The total polyphenol content of the protein hydrolysates (<3 kDa) and the RC50 values obtained from two different antioxidant tests showed that alcalase hydrolysate (HSA) had a relatively high level of antioxidant capacity. In addition, treatment with HSA (25-100 ㎍/mL) significantly inhibited linoleic acid peroxidation. These results suggest that hemp seed protein hydrolysates are potential sources of natural antioxidants. Future studies will focus on the identification of active peptides from HSA.

Antioxidant Effect and Functional Properties of Hydrolysates Derived from Egg-White Protein

  • Cho, Dae-Yeon;Jo, Kyungae;Cho, So Young;Kim, Jin Man;Lim, Kwangsei;Suh, Hyung Joo;Oh, Sejong
    • Food Science of Animal Resources
    • /
    • v.34 no.3
    • /
    • pp.362-371
    • /
    • 2014
  • This study utilized commercially available proteolytic enzymes to prepare egg-white protein hydrolysates (EPHs) with different degrees of hydrolysis. The antioxidant effect and functionalities of the resultant products were then investigated. Treatment with Neutrase yielded the most ${\alpha}$-amino groups (6.52 mg/mL). Alcalase, Flavourzyme, Protamex, and Ficin showed similar degrees of ${\alpha}$-amino group liberation (3.19-3.62 mg/mL). Neutrase treatment also resulted in the highest degree of hydrolysis (23.4%). Alcalase and Ficin treatment resulted in similar degrees of hydrolysis. All hydrolysates, except for the Flavourzyme hydrolysate, had greater radical scavenging activity than the control. The Neutrase hydrolysate showed the highest 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity ($IC_{50}=3.6mg/mL$). Therefore, Neutrase was identified as the optimal enzyme for hydrolyzing egg-white protein to yield antioxidant peptides. During Neutrase hydrolysis, the reaction rate was rapid over the first 4 h, and then subsequently declined. The $IC_{50}$ value was lowest after the first hour (2.99 mg/mL). The emulsifying activity index (EAI) of EPH treated with Neutrase decreased, as the pH decreased. The EPH foaming capacity was maximal at pH 3.6, and decreased at an alkaline pH. Digestion resulted in significantly higher 1,1-diphenyl-2-picrylhydrazyl (DPPH) and ABTS radical scavenging activity. The active peptides released from egg-white protein showed antioxidative activities on ABTS and DHHP radical. Thus, this approach may be useful for the preparation of potent antioxidant products.