Browse > Article
http://dx.doi.org/10.3746/jkfn.2011.40.2.327

Effect of Enzymatic Hydrolysis by Proteases on Antioxidant Activity of Chungkukjang  

Park, Min-Kyung (Dept. of Human Nutrition and Food Science, Chungwoon University)
Publication Information
Journal of the Korean Society of Food Science and Nutrition / v.40, no.2, 2011 , pp. 327-333 More about this Journal
Abstract
Chungkukjang and soybean powder were enzymatically hydrolyzed with 20, 100 and 500 mAU of 3 commercially available proteases (alcalase 2.4L, protamex and neutrase 0.8L) at $50^{\circ}C$ for 120 min. The degree of hydrolysis and antioxidant activities of hydrolysates were comparably evaluated. Alcalase and protamex yielded higher content of peptide compared to neutrase in both Chungkukjang and soybean powder hydrolyzed samples. Both Chungkukjang and soybean hydrolysates showed also greater increases of antioxidant activities compared to those prepared with neutrase. The rates of increment of DPPH, ABTS and hydroxyl radical scavenging activities were similar between Chungkukjang and soybean powder hydrolyzates. These results show that alcalase and protamex are not specific for Chungkukjang but enhance its antioxidant activity.
Keywords
Chungkukjang; soybean powder; alcalase; protamex; neutrase; peptide; antioxidant activity;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Obon JM, Castellar MR, Cascales JA, Fernandez-Lopez JA. 2005. Assessment of TEAC method for determining the antioxidant capacity of synthetic red food colorants. Food Res Int 38: 843-845.   DOI
2 Hirayama O, Yida M. 1997. Evaluation of hydroxyl radical- scavenging ability by chemiluminescence. Anal Biochem 251: 297-299.   DOI
3 Yildiz G, Demiryurek T. 1998. Ferrous iron-induced chemiluminescence: a method for hydroxyl radical study. J Pharmacol Toxicol Method 39: 179-184.   DOI
4 Kong XZ, Guo MM, Hua YF, Cao D, Zhang C. 2008. Enzymatic preparation of immunomodulating hydrolysates from soy proteins. Bioresource Technol 99: 8873-8879.   DOI
5 Berghofer E, Grzeskowiad B, Mundigler N, Sentall WB, Walcak J. 1998. Antioxidative properties of faba bean-, soybean-, and oat tempeh. Int J Food Nutr 49: 45-54.   DOI
6 Lin CH, Wei YT, Chou CC. 2006. Enhanced antioxidative activity of soybean koji prepared with various filamentous fungi. Food Microbiol 23: 628-633.   DOI
7 Moktan B, Saha J, Sarkar PK. 2008. Antioxidant activities of soybean as affected by Bacillus-fermentation to kinema. Food Res Int 41: 586-593.   DOI
8 Esaki H, Onozaki H, Osawa T. 1994. Antioxidative activity of fermented soybean products. In Food Chemicals for Cancer Prevention I: Fruits and Vegetables. Huang MT, ed. American Chemical Society, Washington, DC, USA. p 353-360.
9 Davalos A, Miguel M, Bartolom B, Lopez-Fandino R. 2004. Antioxidant activity of peptides derived from egg white proteins by enzymatic hydrolysis. J Food Prot 67: 1939-1944.   DOI
10 Ishikawa S, Yano Y, Arihara K, Itoh M. 2004. Egg yolk phosvitin inhibits hydroxyl radical formation from the fenton reaction. Biosci Biotechnol Biochem 68: 1324-1331.   DOI   ScienceOn
11 Chen HM, Muramoto K, Yamauchi F, Nokihara K. 1996. Antioxidant activity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein. J Agric Food Chem 44: 2619-2623.   DOI
12 Chen HM, Muramoto K, Yamauchi F. 1995. Structural analysis of antioxidative peptides from soybean beta-conglycinin. J Agric Food Chem 43: 574-578.   DOI
13 Takenaka A, Annaka H, Kimura Y, Aoki H, Igarashi K. 2003. Reduction of paraquat-induced oxidative stress in rats by dietary soy peptide. Biosci Biotehnol Biochem 67: 278-283.   DOI
14 Gibbs BF, Zougman A, Masse R, Mulligan C. 2004. Production and characterization of bioactive peptides from soy hydrolysate and soy-fermented food. Food Res Int 37: 123-131.   DOI
15 Pena-Ramos EA, Xiong YL. 2002. Antioxidant activity of soy protein hydrolysates in a liposomal system. Food Chem Toxicol 67: 2952-2956.
16 Adler-Nissen J. 1979a. Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid. J Agric Food Chem 27: 1256-1262.   DOI
17 Blois MS. 1958. Antioxidant determination by the use of a stable free radical. Nature 181: 1199-1200.   DOI
18 Zhong F, Zhang X, Ma J, Shoemaker CF. 2007. Fractionation and identification of a novel hypocholesterolemic peptide derived from soy protein alcalase hydrolysates. Food Res Int 40: 756-762.   DOI
19 Arnao MB, Cano A, Acosta M. 2001. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem 73: 239-244.   DOI
20 Zhong F, Liu J, Ma J, Shoemaker CF. 2007. Preparation of hypocholesterol peptides from soy protein and their hypocholesterolemic effect in mice. Food Res Int 40: 661-667.   DOI   ScienceOn
21 Wu J, Ding X. 2002. Characterization of inhibition and stability of soy protein-derived angiotensin I-converting enzyme inhibitory peptides. Food Res Int 35: 367-375.   DOI
22 Chiang WD, Tsou MJ, Tsai ZY, Tsai TC. 2006. Angiotensin I-converting enzyme inhibitor derived from soy protein hydrolysate and produced by using membrane reactor. Food Chem 98: 725-732.   DOI
23 Ringseis R, Matthes B, Lehmann V, Becker K, Schops R, Ulbrich-Hofmann R, Eder K. 2005. Peptides and hydrolysates from casein and soy protein modulate the realease of vasoactive substances from human aortic endothelial cells. Biochimica Biophysica Acta 1721: 89-97.   DOI
24 Var A, Yildirim Y, Onur E, Kuscu NK, Uyanik BS, Goktalay K, Guvenc Y. 2003. Endothelial dysfunction in preeclampsia. Increased homocysteine and decreased nitric oxide levels. Gynecol Obstet Investig 56: 214-221.
25 Haperen R, Waard M, Deel E, Mees B, Kutryk T, Aken T, Hamming J, Grosveld A, Dunckre DJ, Crom R. 2002. Reduction of blood pressure, plasma cholesterol, and atherosclerosis by elevated endothelial nitric oxide. J Biol Chem 277: 48803-48807.   DOI
26 Kim SH, Lee YJ, Kwon DY. 1999. isolation of angiotensin converting enzyme inhibitor from Doenjang. Korean J Food Sci Technol 31: 848-854.   과학기술학회마을
27 Suetsuna K, Ukeda H, Ochi H. 2000. Isolation and characterization of free radical scavenging activities peptides derived from casein. J Nutr Biochem 11: 128-131.   DOI
28 Hernandez-Ledesma B, Davalos A, Bartolom B, Amigo L. 2005. Preparation of antioxidant enzymatic hydrolysates from alpha-lactalbumin and beta-lactoglobulin identification of active peptides by HPLC-MS/MS. J Agric Food Chem 53: 588-593.   DOI
29 Berthou J, Migliore-Samour D, Lifchitz A, Delettre J, Floc'h F, Jolles P. 1987. Immunostimulating properties and three-dimensional structure of two tripeptides from human and cow caseins. FEBS Lett 218: 55-58.   DOI
30 Shin JI, Yu R, Park SA, Chung DK, Ahn CW, Nam HS, Kim KS, Lee HJ. 2001. His-His-Leu, an angiotensin I converting enzyme inhibitory peptide derived from Korean soybean paste, exerts antihypertensive activity in vivo. J Agric Food Chem 49: 3004-3009.   DOI
31 Rho SJ, Lee JS, Chung YI, Kim YW, Lee HG. 2009. Purification and identification of an angiotensin I-converting enzyme inhibitory peptide from fermented soybean extract. Process Biochem 44: 490-493.   DOI
32 Cho YJ, Cha WS, Bok SK, Kim MU, Chun SS, Choi UK. 2000. Production and separation of anti-hypertensive peptides during Chunggugjang fermentation with Bacillus subtilis CH-1023. J Korean Soc Agric Chem Biotechnol 43: 247-252.
33 Okamoto A, Hanagata H, Kawamura Y, Yanagida F. 1995. Anti-hypertensive substances in fermented soybean, natto. Plant Foods Hum Nutr 47: 39-47.   DOI
34 Matsui T, Yoo HJ, Hwang JS, Lee DS, Kim HB. 2004. Isolation of angiotensin I-converting enzyme inhibitory peptide from Chungkookjang. Korean J Microbiol 40: 355-358.   과학기술학회마을
35 Kinoshita E, Yamakoshi J, Kikuchi M. 1993. Purification and identification of an angiotensin I-converting enzyme inhibitor from soy sauce. Biosci Biotechnol Biochem 57: 1107-1110.   DOI