• Title/Summary/Keyword: AlN thin films

Search Result 338, Processing Time 0.023 seconds

A study on the deposition characteristics of the hi thin films deposited ionized cluster beam deposition (ICBD법으로 증착된 Al 박막의 증착특성 연구)

  • 안성덕;김동원;천성순;강상원
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.2
    • /
    • pp.207-215
    • /
    • 1997
  • Aluminum (Al) thin films were deposited on the Si(100) and TiN(60 nm)/Si (100) substrate by the ionized cluster beam deposition (ICBD) method. The characteristics of thin films were examined by the $\alpha$-step, four-point-probe, Scanning Electron Spectroscopy (SEM), Auger Electron Spectroscopy (AES). The growth rate of the Al thin film increased and the resistivity decreased as the crucible temperature increased. At the crucible temperature $1800^{\circ}C$, the microstructure of Al thin film deposited was smooth and continuous the resistivity decreased as the acceleration voltage increased. Also, the minimum resistivity in Si(100) substrate and TiN(60 nm)/Si(100) substrate were 3.4 $\mu \Omega \textrm {cm}$, 3.6 $\mu \Omega \textrm {cm}$ at the acceleration voltage 4 kV and 2 kV respectively. From the AES spectrumt 14 wasn't detected any impurities In the Al thin film. Therefore the resistivity of Al thin film was affected by the microstructure of film.

  • PDF

Crystal growth of polyctystalline 3C-SiC thin films on AlN buffer layer (AlN 완충층을 이용한 다결정 3C-SiC 박막의 결정성장)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.333-334
    • /
    • 2007
  • This paper describes the characteristics of poly (polycrystalline) 3C-SiC grown on SiOz and AlN substrates, respectively. The crystalline quality of poly 3C-SiC was improved from resulting in decrease of FWHM (full width half maximum) of XRD by increasing the growth temperature. The minimum growth temperature of poly 3C-SiC was $1100^{\circ}C$. The surface chemical composition and the electron mobility of poly 3C-SiC grown on each substrate were investigated by XPS and Hall Effect, respectively. The chemical compositions of surface of poly 3C-SiC films grown on $SiO_2$ and AlN were not different. However, their electron mobilities were $7.65\;cm^2/V.s$ and $14.8\;cm^2/V.s$, respectively. Therefore, since the electron mobility of poly 3C-SiC films grown on AlN buffer layer was two times higher than that of 3C-SiC/$SiO_2$, a AlN film is a suitable material, as buffer layer, for the growth of poly 3C-SiC thin films with excellent properties for M/NEMS applications.

  • PDF

Oxidation of TiZrAlN nanocomposite thin films in air at temperatures between 500 and $700^{\circ}C$ (TiZrAlN의 500-$700^{\circ}C$ 사이에서 공기 중 산화)

  • Kim, Min-Jeong;Bong, Seong-Jun;Lee, Dong-Bok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.167-170
    • /
    • 2011
  • Quaternary TiZrAlN nanocomposite thin films with a composition of 20.7Ti-22.2Zr-2.7Al-54.4N (at.%) were deposited by the closed-field unbalanced magnetron sputtering (CFUBMS) method and oxidized in air at temperatures between 500 and $700^{\circ}C$. The oxides formed were $TiO_2$, $ZrO_2$, and $Al_2O_3$. The films had inferior oxidation resistance because the amounts of $ZrO_2$ and $TiO_2$ were large while the amount of $Al_2O_3$ was small. The oxidation progressed primarily by the inward diffusion of oxygen and the outward diffusion of nitrogen.

  • PDF

Oxidation of CrAlN and CrZrN Films (CrAlN과 CrZrN의 산화)

  • Kim, Min-Jeong;Kim, Seul-Gi;Lee, Sang-Yul;Lee, Dong-Bok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.33-35
    • /
    • 2011
  • Films of CrAlN and CrZrN were deposited on a steel substrate by closed field unbalanced magnetron sputtering, and their oxidation behaviors were investigated. CrAlN films consisted of dense, polycrystalline CrN and AlN fine columns. The formed oxides consisted primarily of crystalline $Cr_2O_3$ incorporated with $Al_2O_3$. The oxide layers were thin and compact so as to make CrAlN films more protective than CrN films. In case of CrZrN films, Zr atoms were dissolved in the CrN phase. Zr atoms advantageously refined the columnar structure, reduced the surface roughness, and increased the micro-hardness. However, the addition of Zr did not increased oxidation resistance, mainly because Zr was not a protective element. All the deposited films displayed relatively good oxidation resistance, owing to the formation of the highly protective $Cr_2O_3$ on their surface. The $Cr_{40}Zr_9N$ and $Cr_{31}Zr_{16}N$ films oxidized to $Cr_2O_3$ as the major phase and ${\alpha}-ZrO_2$ as the minor one, whereas the CrN film oxidized to $Cr_2O_3$.

  • PDF

Fabrication and Characterization of AlN films Containing Various Amounts of Co Content

  • Bae, Chang-Hwan;Han, Seung-Oh;Han, Cahng-Suk
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.3
    • /
    • pp.268-275
    • /
    • 2010
  • A new approach is described for preparing AlN thin films containing various amounts of Co content by using a two-facing targets type sputtering (TFTS) system. The deposited films were annealed isothermally at different temperatures and their microstructure, magnetic properties and resistivity were investigated. A small saturation magnetization ($4{\pi}Ms=0.52{\sim}0.85kG$) was observed irrespective of Co content in the asdeposited films. It was found that annealing conditions can control physical properties as well as the microstructure of the films. A high saturation magnetization (3.7 kG) and resistivity of $2200{\mu}{\Omega}-cm$ was obtained for AlN films containing 25 at.% Co.

Photoluminescience Properties and Growth of $CuAlSe_2$ Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 $CuAlSe_2$ 단결정 박막 성장과 광발광 특성)

  • Lee, S.Y.;Hong, K.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.386-391
    • /
    • 2003
  • Sing1e crystal $CuAlSe_2$ layers were grown on thoroughly etched semi-insulating GaAs(100) substrate at $410^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating $CuAlSe_2$source at $680^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence(PL) and double crystal X-ray diffraction (DCXD). The carrier density and mobility of single crystal $CuAlSe_2$ thin films measured with Hall effect by van der Pauw method are $9.24{\times}10^{16}\;cm^{-3}$ and $295\;cm^2/V{\cdot}\;s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $CuAlSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)\;=\;2.8382\;eV\;-\;(8.86\;{\times}\;10^{-4}\;eV/K)T^2/(T\;+\;155K)$. After the as-grown single crystal $CuAlSe_2$ thin films were annealed in Cu-, Se-, and Al-atmospheres, the origin of point defects of single crystal $CuAlSe_2$ thin films has been investigated by PL at 10 K. The native defects of $V_{Cd}$, $V_{Se}$, $Cd_{int}$, and $Se_{int}$ obtained by PL measurements were classified as donors or accepters. And we concluded that the heat-treatment in the Cu-atmosphere converted single crystal $CuAlSe_2$ thin films to an optical n-type. Also, we confirmed that Al in $CuAlSe_2/GaAs$ did not form the native defects because Al in single crystal $CuAlSe_2$ thin films existed in the form of stable bonds.

  • PDF

The Effect of Thermal Annealing and Growth of CuAlSe2 Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 CuAlSe2 단결정 박막 성장과 열처리 효과)

  • 윤석진;정태수;이우선;박진성;신동찬;홍광준;이봉주
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.10
    • /
    • pp.871-880
    • /
    • 2003
  • Single crystal CuAlSe$_2$ layers were grown on thoroughly etched semi-insulating GaAs(100) substrate at 410 C with hot wall epitaxy (HWE) system by evaporating CuAlSe$_2$ source at 680 C. The crystalline structure of the single crystal thin films was investigated by the photoluminescence(PL) and double crystal X -ray diffraction (DCXD). The carrier density and mobility of single crystal CuAlSe$_2$ thin films measured with Hall effect by van der Pauw method are 9.24${\times}$10$\^$16/ cm$\^$-3/ and 295 cm$^2$/V $.$ s at 293 K, respectively. The temperature dependence of the energy band gap of the CuAlSe$_2$ obtained from the absorption spectra was well described by the Varshni's relation, Eg(T) = 2.8382 eV - (8.86 ${\times}$ 10$\^$-4/ eV/K)T$^2$/(T + 155K). After the as-grown single crystal CuAlSe$_2$ thin films were annealed in Cu-, Se-, and Al-atmospheres, the origin of point defects of single crystal CuAlSe$_2$ thin films has been investigated by PL at 10 K. The native defects of V$\_$cd/, V$\_$se/, Cd$\_$int/, and Se$\_$int/ obtained by PL measurements were classified as donors or acceptors. And we concluded that the heat-treatment in the Cu-atmosphere converted single crystal CuAlSe$_2$ thin films to an optical n-type. Also, we confirmed that Al in CuAlSe$_2$/GaAs did not form the native defects because Al in single crystal CuAlSe$_2$ thin films existed in the form of stable bonds.

Effects of AlN buffer layer on optical properties of epitaxial layer structure deposited on patterned sapphire substrate (패턴화된 사파이어 기판 위에 증착된 AlN 버퍼층 박막의 에피층 구조의 광학적 특성에 대한 영향)

  • Park, Kyoung-Wook;Yun, Young-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • In this research, 50 nm thick AlN thin films were deposited on the patterned sapphire (0001) substrate by using HVPE (Hydride Vapor Phase Epitaxy) system and then epitaxial layer structure was grown by MOCVD (metal organic chemical vapor deposition). The surface morphology of the AlN buffer layer film was observed by SEM (scanning electron microscopy) and AFM (atomic force microscope), and then the crystal structure of GaN films of the epitaxial layer structure was investigated by HR-XRC (high resolution X-ray rocking curve). The XRD peak intensity of GaN thin film of epitaxial layer structure deposited on AlN buffer layer film and sapphire substrate was rather higher in case of that on PSS than normal sapphire substrate. In AFM surface image, the epitaxial layer structure formed on AlN buffer layer showed rather low pit density and less defect density. In the optical output power, the epitaxial layer structure formed on AlN buffer layer showed very high intensity compared to that of the epitaxial layer structure without AlN thin film.

A study on the Discharge Characteristics of Facing Targets Sputtering Systems and Fabrications of $Al_{N}$ Thin Films (대향전극 스파트링 시스템의 방전특성과 $Al_{N}$ 박막형성에 관한 연구)

  • 이종호;이규철;남용수;김경석
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.05a
    • /
    • pp.71-73
    • /
    • 1994
  • In this paper we have investigated discharge conditions(parameters of this experiment) in facing targets sputtering system and fabricated $Al_{N}$ thin films. The parameters of this study are diameter of wing(d) and distance(L) between two facing targets. Varing discharge conditions, the discharge characteristics are wide different. The optimal conditions in this experiments are d = 6.5 [cm], L = 6.5[cm]

  • PDF

Microstructural and Mechanical Characteristics of TiZrAlN Nanocomposite Thin Films by CFUBMS (CFUBMS을 이용한 TiZrAlN 나노복합 박막의 미세 구조와 기계적 특성)

  • Kim, Youn-J.;Lee, Ho-Y.;Kim, Yong-M.;Kim, Kab-S.;Han, Jeon-G.
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.1
    • /
    • pp.1-5
    • /
    • 2007
  • Quaternary TiZrAlN nanocomposite thin films were synthesized by Closed-Field Unbalanced Magnetron Sputtering (CFUBMS), and their microstructure and mechanical characteristics were examined. The grain refinement of the TiZrAlN nanocomposite thin films was controlled by adjusting the $N_2$ partial pressure. The hardness of the film varied with the $N_2$ partial pressure and the maximum value was obtained approximately 47 GPa. It was also confirmed that there is a critical value of the grain size($d_c$) to need maximum hardness.