• Title/Summary/Keyword: AlN crystal

Search Result 249, Processing Time 0.021 seconds

A study on the growth morphology of AlN single crystal according to the change in temperature using HVPE method (HVPE(Hydride Vapor Phase Epitaxy) 법을 적용한 온도 변화에 따른 AlN 단 결정의 성장 형상에 관한 연구)

  • Seung Min Kang;Gyong-Phil Yin
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.1
    • /
    • pp.36-39
    • /
    • 2024
  • As interest in power semiconductors is growing recently, research on device design and application using light energy gap materials such as SiC and GaN is being actively conducted. Because AlN single crystals have a larger energy gap than the above mentioned materials, research on high-power devices is also in progress, but commercialized wafers have not yet been reported, so research is needed. In this study, we applied the HVPE (Hydride vapor phase epitaxy) method to produce AlN single crystals and attempted to obtain bulk single crystals using our own manufacturing equipment. To this end, we would like to report the results of securing the growth conditions for single crystals. we would like to report on the change in the shape of the grown crystal according to the change in temperature.

Dependance of hot-zone position on AlN single crystal growth by PVT method (PVT법에 의한 AlN 단결정 성장에서 Hot-Zone 의존성)

  • Yin, Gyong-Phil;Kang, Seung-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.2
    • /
    • pp.84-88
    • /
    • 2016
  • AlN single crystals were grown by the PT (Physical vapor transport) method with position-changable induction coil. And the graphite crucible dimensioned ${\Phi}90{\times}H120$ was used on processing. The temperature was $1950{\sim}2050^{\circ}C$ and ambient pressure was 150~1 Torr. And the hot-zone was changed according to times on growing for result comparison. When hot-zone by coil is located below far enough (> 40 mm) from AlN crystal concentration position, the as-grown crystals physical size is better ($300{\mu}m/hr$) than another condition, but the condition-reproducibility was very poor. However the closer the distance between hot-zone and AlN growing posion, the smaller the size of as-grown crystal and the rarer the generation of the crystal nuclear, but the crystal growing condition is stable for quality. The best condition for both growth rate and quality is gained when the starting position of hot-zone coil is about 20 mm distance from growing position. For the best growth condition, the position of hot-zone is very sensitive factor and the further more the condition of speed of coil shift also must control.

A study on the dependance of crucible dimension on AlN single crystal growth (AlN 단결정 성장에 관한 도가니 형태의 의존성에 관한 연구)

  • Yin, Gyong-Phil;Kang, Seung-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • For the special usage, the effort of developing AlN single crystals has been very hot in the world. The AlN-base UV LEDs are used on the field of sterilization, purification, curing and analyzing, which can advance human's living and medical processes etc.. AlN single crystals were grown by the PVT (Physical vapor transport) method. On the growing process, carbon crucibles with three different types such as normal size, taller than normal and wider than normal were used for comparison. The processing temperature was in the range of $1900{\sim}2100^{\circ}C$ and ambient pressure was 200~1 Torr. When the taller crucible was used, the sublimation mass was greater than normal dimension one but the best condition of growth changes widely. However the wider one gave much sublimation mass and growing condition was more stable than normal dimension. On limited growing furnace system, the changes of crucible dimension of PVT method provide the change of best condition for growth rate, as-grown crystal quality and growth condition stability.

“Aluminium Nitride Technology-a review of problems and potential"

  • Dryburgh, Peter M.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.75-87
    • /
    • 1996
  • This review is presented under the following headings: 1.Introduction 1.1 Brief review of the properties of AlN 1.2 Historical survey of work on ceramic and single crystal AlN 2.Thermochemical background 3.Crystal growth 4.Doping 5.Potential applications and future work The known properties of AlN which make it of interest for various are discussed briefly. The properties include chemical stability, crystal structure and lattice constants, refractive indices and other optical properties, dielectric constant, surface acoustic wave velocity and thermal conductivity. The history of work in single crystals, thin films and ceramics are outlined and the thermochemistry of AlN reviewed together with some of the relevant properties of aluminium and nitrogen; the problems encountered in growing crystals of AlN are shown to arise directly from these thermochemical relationships. Methods have been reported in the literature for growing AlN crystals from melts, solution and vapour and these methods are compared critically. It is proposed that the only practicable approach to the growth of AlN is by vapour phase methods. All vapour based procedures share the share the same problems: $.$the difficulty of preventing contamination by oxygen & carbon $.$the high bond energy of molecular nitrogen $.$the refractory nature of AlN (melting point~3073K at 100ats.) $.$the high reactivity of Al at high temperatures It is shown that the growth of epitactic layers and polycrystalline layers present additional problems: $.$chemical incompatibility of substrates $.$crystallographic mismatch of substrates $.$thermal mismatch of substrates The result of all these problems is that there is no good substrate material for the growth of AlN layers. Organometallic precursors which contain an Al-N bond have been used recently to deposit AlN layers but organometallic precursors gave the disadvantage of giving significant carbon contamination. Organometallic precursors which contain an Al-N bound have been used recently to deposit AlN layers but organometallic precursors have the disadvantage of giving significant carbon contamination. It is conclude that progress in the application of AlN to optical and electronic devices will be made only if considerable effort is devoted to the growth of larges, pure (and particularly, oxygen-free) crystals. Progress in applications of epi-layers and ceramic AlN would almost certainly be assisted also by the availability of more reliable data on the pure material. The essential features of any stategy for the growth of AlN from the vapour are outlined and discussed.

  • PDF

Selective area growth of micro-sized AlGaN array structures on GaN stripes (GaN 스트라이프 꼭대기 위의 AlGaN 어레이 미세구조의 선택적 결정 성장)

  • Lee, Seunghyun;Ahn, Hyungsoo;Yang, Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.5
    • /
    • pp.182-187
    • /
    • 2015
  • The growth and characterization of micro sized AlGaN array structures selectively grown by metal organic chemical vapor deposition (MOCVD) on GaN stripes are reported. The shape of the AlGaN array structures depends on the size of exposed area for selective growth. The AlGaN array structures grown selectively on relatively large exposed area have regular shapes resembling those of the GaN stripes on the substrate, while samples selectively grown on relatively small exposed area have irregular shapes. The phonon frequency of the AlGaN array structures increases with increasing Al composition in the AlGaN structure. However, at relatively high Al composition (x = 0.28 in this research), the phonon frequency decreases slightly from the expected value not only because of large tensile strain associated with large differences between the lattice constants of the AlGaN structure and underlying GaN stripes but also changes of crystal facet direction during the selective growth.

Effect of metal buffer layers on the growth of GaN on Si substrates (실리콘 기판위에 금속 완충층을 이용한 GaN 성장과 특성분석)

  • Lee, Jun Hyeong;Yu, Yeon Su;Ahn, Hyung Soo;Yu, Young Moon;Yang, Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.4
    • /
    • pp.161-166
    • /
    • 2013
  • AlN buffer layers have been used for the growth of GaN layers on Si substrates. However, the doping of high concentration of carriers into AlN layers is still not easy, therefore it may cause the increase of series resistance when it is used for the electrical or optical devices. In this work, to improve such a problem, the growth of GaN layers on Si substrates were performed using metal buffer layers instead of AlN buffer layer. We tried combinations of Ti, Al, Cr and Au as metal buffer layers for the growth of GaN on Si substrates. Surface morphology was measured by optical microscope and scanning electron microscope (SEM), and optical properties and crystalline quality were measured by photoluminescence (PL) and X-ray diffractometer (XRD), respectively. Electrical resistances for both cases of AlN and metal buffer layer were compared by current-voltage (I-V) measurement.

A study on the fabrication and properties of aluminum oxynitride spinel spinel(ALON) prepared by reaction sintering method (반응소결법을 이용한 Aluminum Oxynitride Spinel(ALON) 제조 및 특성연구)

  • 장복기;이종호;백용혁;문종하;신동선;임용무
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.3
    • /
    • pp.320-326
    • /
    • 1999
  • Aluminum oxynitride spinel (ALON) was synthesized by the direct melt nitridation (DMN) process using aluminum metal and aluminium oxide. The amount of ALON increased with increasing the reaction sintering temperature. The specimen containing up to 10 wt% Al showed ALON phase only when heat-treated beyond $1750^{\circ}C$. Whereas the specimen composed of more than 12 wt% Al showed unreacted AlN phase. Bulk density of reaction-sintered specimen was increased with increasing sintering temperature, except the speimen containing unreacted AlN where the density slightly decreased when heat-treated beyond $1750^{\circ}C$, Transgranular fracture mode was observed predominantly in the specimen with higher Al content.

  • PDF

Wet chemical etching of molten KOH/NaOH eutectic alloy to evaluate AlN single crystal (AlN 단결정의 품질평가를 위한 molten KOH/NaOH eutectic alloy의 화학적 습식에칭)

  • Park, Cheol Woo;Park, Jae Hwa;Hong, Yoon Pyo;Oh, Dong Keun;Choi, Bong Geun;Lee, Seong Kuk;Shim, Kwang Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.6
    • /
    • pp.237-241
    • /
    • 2014
  • We investigated the optimal etching conditions and properties of the surface change due to molten KOH/NaOH chemical wet etching using an AlN wafer which has been put to practical use in the present study. Results were observed using a scanning electron microscope after 5 minutes etching at $350^{\circ}C$, was found to have a surface form of the respective other Al-face, the N-face. In particular, etch-pit in the form of a hexagon, which is observed in the Al-face appeared, It was calculated at $2{\times}10^6/cm^2{\sim}10^{10}/cm^2$ dislocation density. In the case of N-face, lattice defects in the form of the hexagonal pyramids is formed. It was discovered that in order to observe the orientation of the wafer, which corresponds to the C-axis direction of the resulting hexagonal AlN which was analyzed using XRD (0002) and is a state of being oriented in the (0004) plane. The Radius of curvature of AlN wafer was 1.6~17 m measured by DC-XRD rocking curve position.

Synthesis and characterization of AlN nanopowder by the microwave assisted carbothermal reduction and nitridation (CRN)

  • Chun, Seung-Yeop;Chun, Myoung-Pyo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.5
    • /
    • pp.223-228
    • /
    • 2017
  • Aluminum nitride (AlN) powder was successfully synthesized at low temperature via carbothermal reduction and nitridation (CRN) assisted by microwave heating. The synthesis processes of AlN powder were investigated with X-ray diffraction, FE-SEM, FT-IR and TGA/DSC. Aluminum nitrate was used as an oxidizer and aluminum source, urea as fuel, and glucose as carbon source. These starting materials were mixed with D.I water and reacted in a flask at $100^{\circ}C$ for 20 minutes. After the reaction was finished, black foamy intermediate product was formed, which was considered to be an amorphous $Al_2O_3$ particles through intermediate product obtained by solution combustion synthesis (SCS) at the results of X-ray diffraction patterns and FT-IR. This intermediate product was nitridated at temperatures of $1300^{\circ}C$ and $1400^{\circ}C$ in $N_2$ atmosphere by a microwave heating furnace and then decarbonated at $600^{\circ}C$ for 2 hours in air. It should be noticed from FE-SEM images that as nitridated particles, identified as AlN from X-ray diffraction patterns, are covered with carbon residues. After decarbonating the nitridated powders, the spherical pure AlN powders were obtained without alumina and their particle sizes were dependent on the nitridating temperature with high temperature of $1400^{\circ}C$ giving large particles of around 70~100 nm.

HVPE growth of Mg-doped AlN epilayers for high-performance power-semiconductor devices (고효율 파워 반도체 소자를 위한 Mg-doped AlN 에피층의 HVPE 성장)

  • Bae, Sung Geun;Jeon, Injun;Yang, Min;Yi, Sam Nyung;Ahn, Hyung Soo;Jeon, Hunsoo;Kim, Kyoung Hwa;Kim, Suck-Whan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.6
    • /
    • pp.275-281
    • /
    • 2017
  • AlN is a promising material for wide band gap and high-frequency electronics device due to its wide bandgap and high thermal conductivity. AlN has advantages as materials for power semiconductors with a larger breakdown field, and a smaller specific on-resistance at high voltage. The growth of a p-type AlN epilayer with high conductivity is important for a manufacturing an AlN-based applications. In this paper, Mg doped AlN epilayers were grown by a mixed-source HVPE. Al and Mg mixture were used as source materials for the growth of Mg-doped AlN epilayers. Mg concentration in the AlN was controlled by modulating the quantity of Mg source in the mixed-source. Surface morphology and crystalline structure of AlN epilayers with different Mg concentrations were characterized by FE-SEM and HR-XRD. XPS spectra of the Mg-doped AlN epilayers demonstrated that Mg was doped successfully into the AlN epilayer by the mixed-source HVPE.