• 제목/요약/키워드: Al-segregation

검색결과 97건 처리시간 0.025초

Influences of the Irradiation of Intense Pulsed ion Beam (IPIB) on the Surface of Ni$_3$Al Base Alloy IC6

  • Le, X.Y.;Yan, S.;Zhao, W.J.;Han, B.H.;Wang, Y.G.;Xue, J.M.;Zhang, H.T.
    • Journal of Korean Vacuum Science & Technology
    • /
    • 제6권2호
    • /
    • pp.92-96
    • /
    • 2002
  • In this paper, we treated the Ni$_3$Al based alloy samples with intense pulsed ion beams (IPIB) at the beam parameters of 250KV acceleration voltage, 100 - 200 A/cm$^2$ current density and 60 u pulse duration. We simulated the thermal-mechanical process near the surface of Ni$_3$Al based alloy with our STEIPIB codes. The surface morphology and the cross-section microstructures of samples were observed with SEM, the composition of the sample surface layer was determined by X-ray Energy Dispersive Spectrometry (XEDS) and the microstructure on the surface was observed by Transmission Electron Microscope (TEM). The results show that heating rate increases with the current density of IPIB and cooling rate reached highest value less than 150 A/cm$^2$. The irradiation of IPIB induced the segregation of Mo and adequate beam parameter can improve anti-oxidation properly of IC6 alloy. Some craters come from extraneous debris and liquid droplets, and some maybe due to the melting of the intersection region of interphase. Increasing the pulse number enlarges average size of craters and decreases number density of craters.

  • PDF

가스분무한 Al-8wt.%Fe 합금분말의 급속응고과정에 대한 수치해석 (Numerical Analysis on Rapid Solidification of Gas-atomized Al-8wt. pct Fe Droplets)

  • 김성균;최회진;나형용
    • 한국주조공학회지
    • /
    • 제13권5호
    • /
    • pp.462-475
    • /
    • 1993
  • A numerical analysis on the microstructural evolutions of microcellular and cellular ${\alpha}-aluminum$ phase in the gas-atomized Al-8wt. pct droplets was represented. The 2-dimensional non-Newtonian heat transfer and the dendritic growth theory in the undercooled melt were combined under the assumptions of a point nucleation on droplet surface and the macroscopically smooth solid-liquid interface enveloping the cell tips. It reproduced the main characteristic features of the reported microstructures quite well. It predicted a considerable volume fraction of segregation-free region in a droplet smaller than $l0{\mu}m$ if an initial undercooling larger than 100K is given. The volume fractions of the microcellular region($g_A$) and the sum of the microcellular and cellular region($g_a$) were predicted as functions of the heat transfer coefficient, h and initial undercooling, ${\triangle}T$. It was shown that $g_A$ and $g_a$, in the typical gas-atomization processes with $h=0.1-1.0W/cm^2K$, are dominated by ${\triangle}T$ and h, respectively, but for h larger than $4.0W/cm^2K$, a fully microcellular structure can be obtained irrespective of the initial undercooling.

  • PDF

Bridgman 결정성장시 장입 주괴와 도가니 사이의 틈이 용액이 초기농도에 미치는 영향 (The effect of gap between ingot and crucible on the distribution of initial melt concentration in Bridgman crystal growth)

  • Seung-Mo Chung;Man-Sug Kang;Zin-Hyoung Lee
    • 한국결정성장학회지
    • /
    • 제4권2호
    • /
    • pp.169-177
    • /
    • 1994
  • 결정성장된 시편의 농도분포를 제어하기 위해서는 초기융액의 농도를 균일하게 하여야 한다. 용질농도가 초기융액에 있어서 균일하지 않다면, 성장된 시편에 예측한 것과 다른 거시편석이 발생할 수 있다. 위 쪽의 온도가 높은 온도 구배를 갖고 아래로부터 응고를 진행시키는 Bridgman 방법으로 Al-Cu 합금을 성장시키는 경우, 성장된 시편의 어용질 농도분포가 초기응고 부분이 높고 을고가 진행됨에 따라 감소하는 경향을 갖는 것으로 관찰되었다. 이런 현사은 주괴가 녹으면서 도가니와 주괴의 틈으로 스며나온 Cu의 농도가 높은 융액이 주괴가 완전히 녹은 후의 대류에 의해 아래부분에 축적됨으로 발생했다. Al-Mg 합금의 경우 도가니와 주괴의 틈으로 스며나온 Mg의 농도가 높은 융액이 주괴가 완전히 녹은 후의 대류에 의해 떠오르면서 용질 농도분포가 성장중에 최소값을 가지는 것으로 나타났다. 이러한 거시편석을 억제하기 위하여, 균질화 처리 또는 도가니와 주괴의 틈을 없게 함으로 균일한 농도의 초기유액을 얻었다.

  • PDF

Al-Si 용융 도금된 보론강의 Yb:YAG 디스크 레이저 용접부의 미세조직과 인장성질에 미치는 도금두께의 영향 (Effect of Coating Thickness on Microstructures and Tensile Properties in Yb:YAG Disk Laser Welds of Al-Si Coated Boron Steel)

  • 조위업;공종판;안영남;김철희;강정윤
    • Journal of Welding and Joining
    • /
    • 제31권3호
    • /
    • pp.66-75
    • /
    • 2013
  • In this study, the effect of coating thickness($20{\mu}m$ and $30{\mu}m$) on microstructure and tensile properties in Yb:YAG disk laser welds of Al-Si-coated boron steel (1.2mmt) was investigated. In the case of as welds, the quantity of ferrite was found to be higher in base metal than that in HAZ (Heat Affected Zone) and fusion zone, indicating, fracture occurrs in base metal, and the fracture position is unrelated to the coating thickness. Furthermore, yield strength, tensile strength of base metal and welded specimens showed similar behavior whereas elongation was decreased. On the other hand, base metal and HAZ showed existence of martensite after heat treatment, the fusion zone indicated the presence of full ferrite or austenite and ferrite during heat treatment ($900^{\circ}C$, 5min), After water cooling, austenite was transformed to martensite, and the quantity of ferrite in fusion zone was higher as compared with in base metal, resulting in sharply decrease of yield strength, tensile strength and elongation, which leads to fracture occured at fusion zone. In particular, results showed that because the concentration of Al was higher in 30um coating layer specimen than that of 20um coating specimen, after heat treatment, producing a higher quantity of ferrite was higher after heat treatment in the fusion zone; howevers, it leads to a lower tensile property.

Mechanism of MnS Precipitation on Al2O3-SiO2 Inclusions in Non-oriented Silicon Steel

  • Li, Fangjie;Li, Huigai;Huang, Di;Zheng, Shaobo;You, Jinglin
    • Metals and materials international
    • /
    • 제24권6호
    • /
    • pp.1394-1402
    • /
    • 2018
  • This study investigates the mechanism of MnS precipitation on $Al_2O_3-SiO_2$ inclusions during the solidification of non-oriented silicon steel, especially the influence of the phase structures and sizes of the oxides on the MnS precipitation, by scanning electron microscopy and transmission electron microscopy coupled with energy dispersive spectrometry. The investigation results show that MnS tends to nucleate on submicron-sized $Al_2O_3-SiO_2$ inclusions formed by interdendritic segregation and that it covers the oxides completely. In addition, MnS can precipitate on micron-sized oxides and its precipitation behavior is governed by the phase structure of the oxides. The MnS embryo formed in a MnO-containing oxide can act as a substrate for MnS precipitation, thus permitting further growth via diffusion of solute atoms from the matrix. MnS also precipitates in a MnO-free oxide by the heterogeneous nucleation mechanism. Furthermore, MnS is less prone to precipitation in the $Al_2O_3$-rich regions of the $Al_2O_3-SiO_2$ inclusions; this can be explained by the high lattice disregistry between MnS and $Al_2O_3$.

전자기 연속 주조법을 이용한 의료용 타이타늄 합금 제작에 관한 연구 (Fabrication of Titanium alloy by Electromagnetic Continuous Casting (EMCC) Method for Medical Applications)

  • 최수지;이현재;백수현;현승균;정현도;문병문
    • 한국주조공학회지
    • /
    • 제38권1호
    • /
    • pp.9-15
    • /
    • 2018
  • Electromagnetic continuous casting (EMCC) was used to fabricate Ti-6Al-4V alloys with properties suitable for medical applications. Ti-6Al-4V alloy ingots fabricated by EMCC were subjected to heat treatment, such as residual stress removing (RRS), furnace cooling after solution treatment (ST-FC) and water-cooling after solution treatment (ST-WC), in order to obtain characteristics suitable for the standard. After component analysis, the microstructure and mechanical properties (tensile strength and elongation) were evaluated by ICP, gas analysis, OM, SEM, a Rockwell hardness tester and universal testing machine. The Ti-6Al-4V alloy ingot fabricated by EMCC was fabricated without segregation, and the lamellar structure was observed in the RRS and ST-FC specimens. The ST-WC specimen showed only martensite structure. As a result of evaluating the mechanical properties based on the microstructure results, we found that the water-cooled heat treatment condition after the solution treatment was most suitable for the Ti-6Al-4V ELI standard.

아공정 Al-11.3Si-3.5Cu 합금의 응고조직 형성거동에 관한 연구 (A Study on Microstructure Formation during Directional Solidification of a Hypoeutectic Al-11.3Si-3.5Cu alloy)

  • 서희식;구지호;박경미;이정석;이재현;정원섭
    • 대한금속재료학회지
    • /
    • 제50권12호
    • /
    • pp.897-905
    • /
    • 2012
  • Directional solidification experiments were carried out in a hypoeutectic Al-11.3Si-3.5Cu system to investigate the microstructural evolution with the solidification rate. At a fixed temperature gradient, a dendritic microstructure was observed at a constant speed of more than $25{\mu}ms^{-1}$, a cellular interface developed at $5{\mu}ms^{-1}$ and the growth rate of $0.5{\mu}ms^{-1}$ led to the stability of the planar interface. The results revealed that primary silicon phases formed among cells, even though the studied Al-Si alloy system formed the composition within a hypoeutectic silicon composition. This suggests that the liquid concentration among cells during solidification reached a higher concentration, i.e., the eutectic concentration. It is, however, interesting that primary silicon phases did not form during a dendritic growth of more than $25{\mu}ms^{-1}$. These experimental observations are explained using the theoretical models on the interface temperatures.

디지털 합금 InGaAlAs 다중 양자 우물의 열처리 온도에 따른 발광 특성 (Effect of Annealing Temperature on the Luminescence Properties of Digital-Alloy InGaAlAs Multiple Quantum Wells)

  • 조일욱;변혜령;류미이;송진동
    • 한국진공학회지
    • /
    • 제22권6호
    • /
    • pp.321-326
    • /
    • 2013
  • 디지털 합금(digital alloy) InGaAlAs 다중 양자 우물(multiple quantum wells: MQWs) 구조의 열처리(rapid thermal annealing: RTA) 온도에 따른 발광 특성을 PL (photoluminescence)와 TRPL (time-resolved PL)를 이용하여 분석하였다. $700^{\circ}C$에서 $850^{\circ}C$까지 온도를 변화시켜 RTA한 디지털 합금 MQWs의 PL 결과는 $750^{\circ}C$에서 RTA한 시료가 가장 강한 PL 세기와 가장 좁은 반치폭을 나타내었다. 이것은 $750^{\circ}C$에서 30초 동안 RTA하였을 때 비발광 재결합 센터가 감소하고 가장 매끄러운 경계면이 형성되는 것을 나타낸다. RTA 온도를 $800^{\circ}C$$850^{\circ}C$로 증가하였을 때 PL 피크는 청색편이 하였으며 PL 세기는 감소하였다. PL 피크의 청색편이는 RTA 온도가 증가함에 따라 InGaAs/InAlAs SPS (short-period superlattice)의 경계면에서의 Ga과 Al의 혼합(intermixing)으로 Al 함량이 증가한 것으로 설명되며, PL 세기의 감소는 경계면의 거칠기의 증가와 인듐의 상분리(phase separation)로 인한 비균일 조성(compositional fluctuation)으로 설명된다. RTA 온도를 증가하였을 때 PL 소멸시간은 증가하였으며, 이것은 비발광 재결합 센터(결정 결함)가 감소한 것을 나타낸다. 디지털 합금 InGaAlAs MQWs 시료의 PL 특성은 적절한 RTA 조건에서 현저히 향상되는 것을 확인하였다.

(Ti1-xAlx)N계 질화물의 소결특성에 미치는 Co, Co-Ti 금속결합제의 영향 (Effects of Co-Ti Addition on the Sintering Characteristics of (Ti1-xAlx)N Ntride Powder)

  • 이영기;손용운
    • 열처리공학회지
    • /
    • 제11권3호
    • /
    • pp.177-185
    • /
    • 1998
  • The purpose of this research is to investigate the effects of Co, Co-Ti addition on the sintering characteristic of $(Ti_{1-x}Alx)N$ material synthesized by the direct nitriding method for a application as a cermet material. The observed shrinkage rates of $(Ti_{1-x}Alx)N$ pellets increase with the additive (Co, Co-Ti) content, temperature and time, and also the pellets with the same additive content exhibit the shrinkage behavior that depends on the Ti/Al ratio. However, although the shrinkage rates in this study is the mast higher (36%), the density of the sintered $(Ti_{1-x}Alx)N$ pellet is below 80% density in theory because of the partial segregation and the dense band defect of AlCo compound. Consequentely, it is considered that Co was not effective as a binder material because the wettability of liquid Co metal on $(Ti_{1-x}Alx)N$ materials is poor, In $(Ti_{1-x}Alx)N$ with Ti-Co additive, the stoichiometric TiN is transformed by the under-stoichiometric TiNx(x<1.0) during sintering, leading to the good properties such as hardnees and hot oxidation.

  • PDF

Ti-6Al-4Fe 합금의 가공열처리 미세조직 분석 (Microstructural Analysis of Thermo-Mechanical Processed Ti-6Al-4Fe Alloy)

  • 최병학;최원열;심종헌;박찬희;강주희;김승언;현용택
    • 한국재료학회지
    • /
    • 제25권8호
    • /
    • pp.410-416
    • /
    • 2015
  • Microstructural analysis of a (${\alpha}+{\beta}$) Ti alloy was investigated to consider phase transformation in each step of the thermo-mechanical process using by SEM and TEM EDS. The TAF (Ti-6Al-4Fe) alloy was thermo-mechanically treated with solid solution at $880^{\circ}C$, rolling at $880^{\circ}C$ and annealing at $800^{\circ}C$. In the STQ state, the TAF microstructure was composed of a normal hcp ${\alpha}$ and metastable ${\beta}$ phase. In a rolled state, it was composed of fine B2 precipitates in an ${\alpha}$ phase, which had high Fe segregation and a coherent relationship with the ${\beta}$ matrix. Finally, in the annealing state, the fine B2 precipitates had disappeared in the ${\alpha}$ phase and had gone to the boundary of the ${\alpha}$ and ${\beta}$ phase. On the other hand, in a lower rolling temperature of $704^{\circ}C$, the B2 precipitates were more coarse in both the ${\alpha}$ and the boundary of ${\alpha}$ and ${\beta}$ phase. We concluded that microstructural change affects the mechanical properties of formability including rolling defects and cracks.