Browse > Article
http://dx.doi.org/10.3365/KJMM.2012.50.12.897

A Study on Microstructure Formation during Directional Solidification of a Hypoeutectic Al-11.3Si-3.5Cu alloy  

Seo, Heesik (Department of Materials Science and Engineering, Busan National University)
Gu, Jiho (Department of Metallurgy & Materials Science and Engineering, Changwon National University)
Park, Kyungmi (Department of Metallurgy & Materials Science and Engineering, Changwon National University)
Lee, Jeongseok (Department of Metallurgy & Materials Science and Engineering, Changwon National University)
Lee, Jehyun (Department of Metallurgy & Materials Science and Engineering, Changwon National University)
Chung, Wonsub (Department of Materials Science and Engineering, Busan National University)
Publication Information
Korean Journal of Metals and Materials / v.50, no.12, 2012 , pp. 897-905 More about this Journal
Abstract
Directional solidification experiments were carried out in a hypoeutectic Al-11.3Si-3.5Cu system to investigate the microstructural evolution with the solidification rate. At a fixed temperature gradient, a dendritic microstructure was observed at a constant speed of more than $25{\mu}ms^{-1}$, a cellular interface developed at $5{\mu}ms^{-1}$ and the growth rate of $0.5{\mu}ms^{-1}$ led to the stability of the planar interface. The results revealed that primary silicon phases formed among cells, even though the studied Al-Si alloy system formed the composition within a hypoeutectic silicon composition. This suggests that the liquid concentration among cells during solidification reached a higher concentration, i.e., the eutectic concentration. It is, however, interesting that primary silicon phases did not form during a dendritic growth of more than $25{\mu}ms^{-1}$. These experimental observations are explained using the theoretical models on the interface temperatures.
Keywords
Al-Si alloy; directional solidification; solidification rate; segregation; dendrite spacing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. R. Davis, ASM specialty handbook: Aluminum and aluminum alloys, pp.88-120, ASM International, OH, USA (1993).
2 I. J. Polmear, Light alloys: Metallurgy of the light metals, 3rd ed., pp.168-186, Arnold, London, UK (1995).
3 Metals Handbook, 8th ed., ASM, Metals Park, OH, USA (1961).
4 N. Roy, A. M. Samuel, and F. H. Samuel, Metall. Mater. Trans. A 27, 415 (1996).   DOI   ScienceOn
5 Murray and McAlister, Metals Handbook, 8th ed., p.263 (1973).
6 I. J. Polmear, Light Metals, E. Arnold Publishers, London, UK (1981).
7 W. Kurz and D. J. Fisher, Fundamentals of Solidification, 3rd ed., pp.45-89, Trans Tech Publications, VT, USA (1989).
8 M. C. Flemings, Solidification Processing, pp.134-172, McGraw-Hill Book Company, NY, USA (1974).
9 D. M. Rosa, J. E. Spinelli, A. Garcia, Mater. Lett. 60, 1871 (2006).   DOI   ScienceOn
10 R. Trivedi, S. Liu, P. Mazumder, E. Simsek, Sci. Technol. Adv. Mater. 2, 309 (2001).   DOI   ScienceOn
11 W. A. Tiller, K. A. Jackson, J. W. Rutter, B. Chalmers, Acta Metall. 1, 428 (1953).   DOI   ScienceOn
12 J. D. Hunt, Solidification and Casting of Metals, p. 3, The Metal Society, London, UK (1979).
13 W. Kurz, D. J. Fisher, Acta Metall. 29, 11 (1981).   DOI   ScienceOn
14 R. Trivedi, Metall. Trans. A 15, 977 (1984).
15 J. D. Hunt, S. Z. Lu, Metall. Mater. Trans. A 27, 611 (1996).   DOI   ScienceOn
16 R. J. Barnhurst, E. Gervais and F. D. Bayles, AFS Trans. 91, 569 (1983).
17 S. Ling and M. P. Anderson, JOM, 44, 30 (1992).
18 K. Rhadhakrishna, S. Seshan, M. R. Seshadri, AFS Trans. 88, 695 (1980).
19 R. N. Grugel, J. Mat. Sci. 28, 677 (1993).   DOI   ScienceOn
20 N. J. Whisler, T. Z. Kattamis, J. Cryst. Growth, 15, 20 (1972).   DOI   ScienceOn
21 U. Fuerer, Proceeding of Quality Control of Engineering Alloys and the Role of Metals Science (Eds. Nieswaag N., Schwut J.-W.), p. 131, Delft University of Technology, Delft, Netherland (1977).
22 D. Bouchard, J. S. Kirkaldy, Metall. Mater. Trans. B 28, 652 (1997).
23 R. Trivedi, K. Somboonsuk, Mater. Sci. Eng. 65, 65 (1984).   DOI   ScienceOn
24 W. W. Mullins, R. F. Sekarka, J. Appl. Phys. 36, 444 (1965).
25 W. W. Mullins, R. F. Sekarka, J. Appl. Phys. 35, 264 (1965).
26 V. S. Zolotorevsky, N. A. Belov, and M. V. Glazoff, Casting aluminum alloys, 1st ed., pp. 327-447, Elsevier publications, Oxford, UK (2007).
27 M. B. Djurdjevic, W. Kasprzak, C. A. Kierkus, W. T. Kierkus, and J. H. Sokolowski, AFS 105th Casting Congress, pp.285-298, Dallas, USA (2001).
28 L. Backerud, G. Chai, and J. Tamminen, Solidification characteristics of aluminum alloys, vol. 2: Foundary alloys, AFS/Skanaluminium, USA (1992).
29 F. H. Samuel, A. M. Samuel, and H. W. Doty, AFS Trans. 104, 893 (1996).
30 M. H. Mulazimoglu, N. Tenekedjiev, B. M. Closset, and J. E. Gruzleski, Cast Met. 6, 16 (1993).   DOI
31 Y. Du, Y. A. Chang, B. Huang, W. Gong, Z. Jin, H. Xu, Z. Yuan, Y. Liu, Y. He, and F. Y. Xie, Mater. Sci. Eng. A 363, 140 (2003).   DOI   ScienceOn
32 C. H. Caceres, M. B. Djurdjevic, T. J. Stockwell, J. H. Sokolowski, Scr. mater. 40, 631 (1999).   DOI   ScienceOn
33 K. A. Jackson, J. D. Hunt, Trans. Metall. Soc. AIME 236, 1129 (1966).
34 R. Trivedi and W. Kurz, Solidification processing of eutectic alloys, pp.3-34, TMS, Warrendale, PA, USA (1988).