Browse > Article
http://dx.doi.org/10.1007/s12540-018-0141-4

Mechanism of MnS Precipitation on Al2O3-SiO2 Inclusions in Non-oriented Silicon Steel  

Li, Fangjie (State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University)
Li, Huigai (State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University)
Huang, Di (State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University)
Zheng, Shaobo (State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University)
You, Jinglin (State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University)
Publication Information
Metals and materials international / v.24, no.6, 2018 , pp. 1394-1402 More about this Journal
Abstract
This study investigates the mechanism of MnS precipitation on $Al_2O_3-SiO_2$ inclusions during the solidification of non-oriented silicon steel, especially the influence of the phase structures and sizes of the oxides on the MnS precipitation, by scanning electron microscopy and transmission electron microscopy coupled with energy dispersive spectrometry. The investigation results show that MnS tends to nucleate on submicron-sized $Al_2O_3-SiO_2$ inclusions formed by interdendritic segregation and that it covers the oxides completely. In addition, MnS can precipitate on micron-sized oxides and its precipitation behavior is governed by the phase structure of the oxides. The MnS embryo formed in a MnO-containing oxide can act as a substrate for MnS precipitation, thus permitting further growth via diffusion of solute atoms from the matrix. MnS also precipitates in a MnO-free oxide by the heterogeneous nucleation mechanism. Furthermore, MnS is less prone to precipitation in the $Al_2O_3$-rich regions of the $Al_2O_3-SiO_2$ inclusions; this can be explained by the high lattice disregistry between MnS and $Al_2O_3$.
Keywords
Non-oriented silicon steel; Inclusion; Solidification process; Scanning electron microscopy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F.J. Li, H.G. Li, Y. Wu, D. Zhao, B.W. Peng, H.F. Huang, J.L. You, J. Mater. Res. 32, 2307 (2017)   DOI
2 Y. Luo, A.N. Conejo, L. Zhang, L. Chen, L. Cheng, Metal. Mater. Trans. B 46, 2348 (2015)   DOI
3 Y. Okada, S. Fukagawa, K. Ieda, K. Maya, H. Ikemiya, K. Shinme, Development of RH-powder top blowing process. Revue de Metallurgie 91, 923 (1994)   DOI
4 H. Okano, K. Tada, S. Fukagawa and Y. Tajiri, in 80 th Steelmaking Conference, p. 127 (1997)
5 Z. Zulhan, Y.A. Patriona, C. Schrade, SEAISI Q. J. 42, 32 (2013)
6 G. Lyudkovsky, P.D. Southwick, Metal. Mater. Trans. A 17, 1267 (1986)   DOI
7 J. Takamura and S. Mizoguchi, in The Sixth International Iron and Steel Congress, p. 591 (1990)
8 S. Mizoguchi and J. Takamura, in The Sixth International Iron and Steel Congress, p. 598 (1990)
9 Y.B. Kang, H.G. Lee, ISIJ Int. 50, 501 (2010)   DOI
10 Y. Kang, K. Han, J.H. Park, C. Lee, Metal. Mater. Trans. A 45, 4753 (2014)   DOI
11 M. Wakoh, T. Sawai, S. Mizoguchi, ISIJ Int. 36, 1014 (1996)   DOI
12 S. Kimura, K. Nakajima, S. Mizoguchi, H. Hasegawa, Metal. Mater. Trans. A 33, 427 (2002)   DOI
13 D. Kim, K. Han, B. Lee, I. Han, J.H. Park, C. Lee, Metal. Mater. Trans. A 45, 2046 (2014)   DOI
14 H.S. Kim, H.G. Lee, K.S. Oh, Metal. Mater. Trans. A 32, 1519 (2001)   DOI
15 H. Ohta, H. Suito, ISIJ Int. 46, 480 (2006)   DOI
16 T. Sawai, M. Wakoh, Y. Ueshima, S. Mizoguchi, ISIJ Int. 32, 169 (1992)   DOI
17 H.S. Kim, H.G. Lee, O.H. Kyung Shik, Met. Mater. Int. 6, 305 (2000)   DOI
18 C. Sombuthawee, S.B. Bonsall, F.A. Hummel, J. Solid State Chem. 25, 391 (1978)   DOI
19 W. Ostwald, Z. Phys, Z. Phys. Chem. 22, 289 (1897)
20 M. Yoshimura, Bull. Am. Ceram. Soc. 67, 1950 (1988)
21 Z. Liu, K. Gu, K. Cai, ISIJ Int. 42, 950 (2002)   DOI
22 H.S. Kim, H.G. Lee, W.G. Jung, ISIJ Int. 40, 82 (2000)   DOI
23 G.C. Wang, S.L. Li, X.G. Ai, C.M. Zhang, C.B. Lai, J. Iron. Steel Res. Int. 22, 566 (2015)   DOI
24 N. Koyama, F. Tsukihashi, N. Sano, Tetsu-to-Hagane 79, 1334 (1993)   DOI
25 M. Wakoh, T. Sawai, S. Mizoguchi, Tetsu-to-Hagane 78, 1697 (1992)   DOI
26 Z. Fan, Metal. Mater. Trans. A 44, 1409 (2013)   DOI
27 D. Turnbull, B. Vonnegut, Ind. Eng. Chem. Res. 44, 1292 (1952)   DOI
28 D. Brooksbank and K.W. Andrews, in Production and Application of Clean Steels, p. 186 (1972)
29 S. Aramaki, R. Roy, J. Am, Ceram. Soc. 45, 229 (1962)   DOI
30 N. Yoshida, O. Umezawa, K. Nagai, ISIJ Int. 43, 348 (2003)   DOI
31 X. Liu, Q. He, H. Wang, M.E. Fleet, X. Hu, Geosci. Front. 1, 91 (2010)   DOI
32 Y. Iqbal, W.E. Lee, J. Am, Ceram. Soc. 83, 3121 (2000)   DOI
33 PDF-2, International Centre for Diffraction Data, PA, USA (1994)
34 J.X. Chen, Steelmaking Common Chart Data Manual, 2nd edn. (Metallurgical Industry Press, Beijing, 1984)
35 B.Y. Shiro, Tetsu-to-Hagane 84, 85 (1998)   DOI
36 B.L. Bramfitt, Metal. Mater. Trans. B 1, 1987 (1970)
37 H. Todoroki, K. Mizuno, Iron Steelmak. 30, 60 (2003)