DOI QR코드

DOI QR Code

A Study on Microstructure Formation during Directional Solidification of a Hypoeutectic Al-11.3Si-3.5Cu alloy

아공정 Al-11.3Si-3.5Cu 합금의 응고조직 형성거동에 관한 연구

  • Seo, Heesik (Department of Materials Science and Engineering, Busan National University) ;
  • Gu, Jiho (Department of Metallurgy & Materials Science and Engineering, Changwon National University) ;
  • Park, Kyungmi (Department of Metallurgy & Materials Science and Engineering, Changwon National University) ;
  • Lee, Jeongseok (Department of Metallurgy & Materials Science and Engineering, Changwon National University) ;
  • Lee, Jehyun (Department of Metallurgy & Materials Science and Engineering, Changwon National University) ;
  • Chung, Wonsub (Department of Materials Science and Engineering, Busan National University)
  • 서희식 (부산대학교 재료공학부) ;
  • 구지호 (창원대학교 금속신소재공학과) ;
  • 박경미 (창원대학교 금속신소재공학과) ;
  • 이정석 (창원대학교 금속신소재공학과) ;
  • 이재현 (창원대학교 금속신소재공학과) ;
  • 정원섭 (부산대학교 재료공학부)
  • Received : 2012.03.22
  • Published : 2012.12.25

Abstract

Directional solidification experiments were carried out in a hypoeutectic Al-11.3Si-3.5Cu system to investigate the microstructural evolution with the solidification rate. At a fixed temperature gradient, a dendritic microstructure was observed at a constant speed of more than $25{\mu}ms^{-1}$, a cellular interface developed at $5{\mu}ms^{-1}$ and the growth rate of $0.5{\mu}ms^{-1}$ led to the stability of the planar interface. The results revealed that primary silicon phases formed among cells, even though the studied Al-Si alloy system formed the composition within a hypoeutectic silicon composition. This suggests that the liquid concentration among cells during solidification reached a higher concentration, i.e., the eutectic concentration. It is, however, interesting that primary silicon phases did not form during a dendritic growth of more than $25{\mu}ms^{-1}$. These experimental observations are explained using the theoretical models on the interface temperatures.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. J. R. Davis, ASM specialty handbook: Aluminum and aluminum alloys, pp.88-120, ASM International, OH, USA (1993).
  2. I. J. Polmear, Light alloys: Metallurgy of the light metals, 3rd ed., pp.168-186, Arnold, London, UK (1995).
  3. Metals Handbook, 8th ed., ASM, Metals Park, OH, USA (1961).
  4. N. Roy, A. M. Samuel, and F. H. Samuel, Metall. Mater. Trans. A 27, 415 (1996). https://doi.org/10.1007/BF02648419
  5. Murray and McAlister, Metals Handbook, 8th ed., p.263 (1973).
  6. I. J. Polmear, Light Metals, E. Arnold Publishers, London, UK (1981).
  7. W. Kurz and D. J. Fisher, Fundamentals of Solidification, 3rd ed., pp.45-89, Trans Tech Publications, VT, USA (1989).
  8. M. C. Flemings, Solidification Processing, pp.134-172, McGraw-Hill Book Company, NY, USA (1974).
  9. D. M. Rosa, J. E. Spinelli, A. Garcia, Mater. Lett. 60, 1871 (2006). https://doi.org/10.1016/j.matlet.2005.12.040
  10. R. Trivedi, S. Liu, P. Mazumder, E. Simsek, Sci. Technol. Adv. Mater. 2, 309 (2001). https://doi.org/10.1016/S1468-6996(01)00062-6
  11. W. A. Tiller, K. A. Jackson, J. W. Rutter, B. Chalmers, Acta Metall. 1, 428 (1953). https://doi.org/10.1016/0001-6160(53)90126-6
  12. J. D. Hunt, Solidification and Casting of Metals, p. 3, The Metal Society, London, UK (1979).
  13. W. Kurz, D. J. Fisher, Acta Metall. 29, 11 (1981). https://doi.org/10.1016/0001-6160(81)90082-1
  14. R. Trivedi, Metall. Trans. A 15, 977 (1984).
  15. J. D. Hunt, S. Z. Lu, Metall. Mater. Trans. A 27, 611 (1996). https://doi.org/10.1007/BF02648950
  16. R. J. Barnhurst, E. Gervais and F. D. Bayles, AFS Trans. 91, 569 (1983).
  17. S. Ling and M. P. Anderson, JOM, 44, 30 (1992).
  18. K. Rhadhakrishna, S. Seshan, M. R. Seshadri, AFS Trans. 88, 695 (1980).
  19. R. N. Grugel, J. Mat. Sci. 28, 677 (1993). https://doi.org/10.1007/BF01151244
  20. N. J. Whisler, T. Z. Kattamis, J. Cryst. Growth, 15, 20 (1972). https://doi.org/10.1016/0022-0248(72)90315-6
  21. U. Fuerer, Proceeding of Quality Control of Engineering Alloys and the Role of Metals Science (Eds. Nieswaag N., Schwut J.-W.), p. 131, Delft University of Technology, Delft, Netherland (1977).
  22. D. Bouchard, J. S. Kirkaldy, Metall. Mater. Trans. B 28, 652 (1997).
  23. R. Trivedi, K. Somboonsuk, Mater. Sci. Eng. 65, 65 (1984). https://doi.org/10.1016/0025-5416(84)90200-3
  24. W. W. Mullins, R. F. Sekarka, J. Appl. Phys. 36, 444 (1965).
  25. W. W. Mullins, R. F. Sekarka, J. Appl. Phys. 35, 264 (1965).
  26. V. S. Zolotorevsky, N. A. Belov, and M. V. Glazoff, Casting aluminum alloys, 1st ed., pp. 327-447, Elsevier publications, Oxford, UK (2007).
  27. M. B. Djurdjevic, W. Kasprzak, C. A. Kierkus, W. T. Kierkus, and J. H. Sokolowski, AFS 105th Casting Congress, pp.285-298, Dallas, USA (2001).
  28. L. Backerud, G. Chai, and J. Tamminen, Solidification characteristics of aluminum alloys, vol. 2: Foundary alloys, AFS/Skanaluminium, USA (1992).
  29. F. H. Samuel, A. M. Samuel, and H. W. Doty, AFS Trans. 104, 893 (1996).
  30. M. H. Mulazimoglu, N. Tenekedjiev, B. M. Closset, and J. E. Gruzleski, Cast Met. 6, 16 (1993). https://doi.org/10.1080/09534962.1993.11819122
  31. C. H. Caceres, M. B. Djurdjevic, T. J. Stockwell, J. H. Sokolowski, Scr. mater. 40, 631 (1999). https://doi.org/10.1016/S1359-6462(98)00492-8
  32. K. A. Jackson, J. D. Hunt, Trans. Metall. Soc. AIME 236, 1129 (1966).
  33. R. Trivedi and W. Kurz, Solidification processing of eutectic alloys, pp.3-34, TMS, Warrendale, PA, USA (1988).
  34. Y. Du, Y. A. Chang, B. Huang, W. Gong, Z. Jin, H. Xu, Z. Yuan, Y. Liu, Y. He, and F. Y. Xie, Mater. Sci. Eng. A 363, 140 (2003). https://doi.org/10.1016/S0921-5093(03)00624-5