• Title/Summary/Keyword: Al-doped zinc oxide

Search Result 119, Processing Time 0.024 seconds

Preparation and Evaluation of the Properties of Al-doped Zinc Oxide (AZO) Films Deposition by Rapid Thermal Annealing (급속 열처리 방법에 의한 Al-doped Zinc Oxide (AZO) Films의 제조 및 특성 평가)

  • Kim, Sung-Jin;Choi, Kyoon;Choi, Se-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.7
    • /
    • pp.543-551
    • /
    • 2012
  • In this study, transparent conducting Al-doped Zinc Oxide (AZO) films with a thickness of 150 nm were prepared on corning glass substrate by the RF magnetron sputtering with using a Al-doped zinc oxide (AZO), ($Al_2O_3$: 2 wt%) target at room temperature. This study investigated the effect of rapid thermal annealing temperature and oxygen ambient on structural, electrical and optical properties of Al-doped zinc oxide (AZO) thin films. The films were annealed at temperatures ranging from 400 to $700^{\circ}C$ by using Rapid thermal equipment in oxygen ambient. The effect of RTA treatment on the structural properties were studied by x-ray diffraction and atomic force microscopy. It is observed that the Al-doped zinc oxide (AZO) thin film annealed at $500^{\circ}C$ at 5 minute oxygen ambient gas reveals the strongest XRD emission intensity and narrowest full width at half maximum among the temperature studied. The enhanced UV emission from the film annealed at $500^{\circ}C$ at 5 minute oxygen ambient gas is attributed to the improved crystalline quality of Al-doped zinc oxide (AZO) thin film due to the effective relaxation of residual compressive stress and achieving maximum grain size.

Effect of sputtering parameters and targets on properties of ZnO:Al thin films prepared by reactive DC magnetron sputtering (직류 반응성 sputtering법으로 제막된 ZnO:Al 박막의 물성에 미치는 증착조건 및 타겟의 영향)

  • 유병석;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.4
    • /
    • pp.592-598
    • /
    • 1998
  • AZO(Aluminum doped Zinc Oxide) thin films were fabricated by reactive DC magnetron sputtering method using zinc metal target (Al 2%) and zinc oxide target ($Al_2O_3\;2%$) respectively. The intermediate condition with optimum transmittance and conductivity was obtained by controlling the sputtering parameters. Oxygen gas ratio for this condition was $0.5{\times}10^{-2}~1.0{\times}10^{-2}$ in oxide target and. In case of metal target, this optimum oxygen gas ratio at the applied power of 0.6 kW and 1.0 kW was 0.215~0.227 and 0.305~0.315, respectively. The resistivity of AZO film deposited was obtained $1.2~1.4{\times}10^{-3} {\Omega}{\cdot}$cm as deposited state regardless of target species.

  • PDF

Effects of Sputter Pressure on the Properties of Sputtered ZnO:Al Films Deposited on Plastic Substrate (플라스틱 기판에 증착한 ZnO:Al 박막의 특성에 미치는 스퍼터 압력 효과)

  • Lee, Jae-Hyeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.3
    • /
    • pp.277-283
    • /
    • 2009
  • In this paper, aluminum doped zinc oxide (ZnO:Al) thin films on plastic substrate such as poly carbonate (PC), polyethylene terephthalate (PET) were prepared by RF magnetron sputtering method for flexible solar cell applications. Effects of the sputter pressure on the structural, electrical and optical properties were investigated. The crystallinity and the degree of the (002) orientation were deteriorated with increasing the sputter pressure. When the sputter pressure was higher, the conductivity of ZnO:Al films was improved because of the high carrier concentration and the Hall mobility. High quality ZnO:Al films with resistivity as low as $1.9{\times}10^{-3}{\Omega}-cm$ and the optical transmittance over 80 % in the visible region have been obtained on PC substrate at 2 mTorr.

Optical properties of Al doped ZnO Nanofibers Prepared by electrospinning (전기방사를 이용한 Al이 첨가된 ZnO 나노섬유의 제조 및 광학 특성평가)

  • Song, Chan-Geun;Yoon, Jong-Won
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.5
    • /
    • pp.205-209
    • /
    • 2011
  • Zinc oxide has semi-conductivity and super conductivity characteristics. It can be used optically and is applied on many areas such as gas sensor, solar cell and optical waveguide. In this paper, to improve optical characteristics of ZnO, aluminum was added on zinc oxide. Zinc oxide and aluminum zinc oxide was fabricated as nano fiber form. ZnO solution was created by mixing poly vinyl pyrrolidone, ethyl alcohol, and zinc acetate. An Al doped ZnO was created by adding aluminum solution to ZnO sol. By applying these sols on electro spinning method, nano fibers were fabricated. These fibers are heat treated at 300, 500, and $700^{\circ}C$ degrees and were analyzed with X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) to examine the nano structures. TGA and DSC measurement was also used to measure the change of mass and calorie upon temperature change. The absorbance of ZnO and Al-doped ZnO was carried out by UV-vis measurement.

Efficient Organic Light-emitting Diodes with Aluminum-doped Zinc Oxide Anodes (알루미늄 도핑된 산화아연 양극을 적용한 고효율 유기발광다이오드)

  • Lee, Ho-Nyeon;Lee, Young-Gu;Jung, Jong-Guk;Lee, Seung-Eui;Oh, Tae-Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.8
    • /
    • pp.711-715
    • /
    • 2007
  • Properties of organic light-emitting diodes (OLEDs) with aluminum-doped zinc oxide (ZnO:Al) anodes showed different behaviors from OLEDs with indium tin oxide (ITO) anodes according to driving conditions. OLEDs with ITO anodes gave higher current density and luminance in lower voltage region and better EL and power efficiency under lower current density conditions, However, OLEDs with ZnO:Al anodes gave higher current density and luminance in higher voltage region over about 8V and better EL and power efficiency under higher current density over $200mA/cm^2$. These seemed to be due to the differences in conduction properties of semiconducting ZnO:Al and metallic ITO. OLEDs with ZnO:Al anodes showed nearly saturated efficiency under high current driving conditions compared with those of OLEDs with ITO anodes. This meant better charge balance in OLEDs with ZnO:Al anodes. These properties of OLEDs with ZnO:Al anodes are useful in making bright display devices with efficiency.

Effects of Annealing Temperature on Properties of Al-Doped ZnO Thin Films prepared by Sol-Gel Dip-Coating

  • Jun, Min-Chul;Koh, Jung-Hyuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.163-167
    • /
    • 2013
  • Aluminum doped zinc oxide (AZO) thin films have been prepared on the glass substrates (Corning 1737) by sol-gel dip-coating method employing zinc acetate and aluminum chloride hexahydrate for the transparent conducting oxide (TCO) applications. 1 at% Al was doped to the ZnO thin films. The effects of post-heating temperature on the crystallization, optical and electrical properties of the AZO films have been investigated. Experimental results showed that post-heating temperature affected the microstructure, electrical resistance, and optical transmittance of the AZO films. From the X-ray diffraction analysis, all films have hexagonal wurtzite crystal structure. Optical transmittance spectra of the AZO films exhibited transmittance higher than about 80% within the visible wavelength region and the optical direct band gap ($E_g$) of these films was increased with increasing post-heating temperature. A minimum resistivity of $2.5{\times}10^{-3}{\Omega}cm$ was observed at $650^{\circ}C$.

The effect of Ar plasma treatment on Al-doped ZnO (Ar 플라즈마 처리에 따른 Al-doped ZnO 박막특성변화)

  • Jin, Sun-Moon;Ahn, Chul-Woo;Cho, Nam-In;Nam, Hyoung-Gin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.4
    • /
    • pp.43-46
    • /
    • 2011
  • In this study, we investigated the effects of the post Ar plasma treatment at different RF powers for various durations on electrical, structural, and optical properties of relatively thin Al-doped zinc oxide films. The sheet resistance was observed to decrease rapidly for the first 5min, beyond which the resistance apparently saturated. As the RF power increased, the grain size and the interplanar distance of (002) planes also increased. The observed decrease in sheet resistance was stated to be a consequence of Al and/or Zn interstitials as well as grain growth. It was also found that Ar plasma treatment increased the transmittance of Al-doped zinc oxide films in most of the visible light range below the blue light.

Electrical and optical properties of ZnO:Al thin films prepared by reactive sputtering method (반응성 sputtering법으로 제막된 ZnO : Al 박막의 전기.광학적 특성)

  • 유병석;유세웅;이정훈
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.4
    • /
    • pp.480-492
    • /
    • 1996
  • AZO (Aluminum doped Zinc Oxide) transparent conducting thin films were fabricated by reactive DC mangnetron sputtering method using zinc target containing 2 wt% of Al. Transition range with optimum transmittance and conductivity was obtained by contrlling partial pressure of reactive oxygen gas. Sputtering condition for this transition range could be kept stable by regulating the target voltage. According to XRD analysis, there was only one peak for (002) plane in AZO films and the films deposited in transition range.

  • PDF

Synthesis of Al-Doped ZnO by Microwave Assisted Hydrothermal Method and its Optical Property (마이크로파 수열합성법을 이용한 알루미늄이 도핑된 산화아연 합성 및 그 광학적 특성)

  • Hyun, Mi-Ho;Kang, Kuk-Hyoun;Lee, Dong-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1555-1562
    • /
    • 2015
  • Metal oxide semiconductors have been applied in several areas, such as solar cells, sensor, optical elements and displays, due to the high surface area, unique electrical and optical characteristics. Zinc oxide among the metal oxide has excellent physicochemical properties. Zinc oxide is a n-type semiconductor with a wide direct transition band gap of 3.37 eV at room temperature and large exciton binding energy of 60 meV. Cation-doped zinc oxide studies were conducted to complement the electrical and optical characteristics. In this paper, Al-doped ZnO was synthesized by hydrothermal synthesis using microwaves. ZnO was synthesized by adjusting the precursor ratio and using different dopants. The optimal ZnO synthesis conditions for crystal shape and optical properties were determined. The optical properties of aluminum doped zinc oxide were then examined by SEM, XRD, PL, UV-vis absorbance spectrum, and EDS.

Synthesis and Characterization of Al-Doped Zinc Oxide Films by an Radio Frequency Magnetron Sputtering Method for Transparent Electrode Applications

  • Seo, Jae-Keun;Ko, Ki-Han;Cho, Hyung-Jun;Choi, Won-Seok;Park, Mun-Gi;Seo, Kyung-Han;Park, Young;Lim, Dong-Gun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.1
    • /
    • pp.29-32
    • /
    • 2010
  • In this study, transparent and conductive Al-doped zinc oxide (AZO) films were prepared on a glass substrate by an radio frequency (RF) magnetron sputtering method using a 150-nm-thick AZO target (Al: 2 wt.%) at room temperature. We investigated the effects of RF power between 100-350 W (in steps of 50 W) on the structural, electrical, and optical properties of the AZO films. The thickness and cross-sectional images of the films were observed by field emission scanning electron microscopy. The thicknesses of all films were kept constant at 150 nm and grown on a glass substrate. The grain sizes of the AZO films were determined with the X-ray diffraction by using the Scherrer' equation, and their electrical properties were investigated using a Hall effect electronic transport measurement system. The transmittance of the AZO films was also measured by an ultraviolet-visible spectrometer.