• Title/Summary/Keyword: Al-doped p-type ZnO

Search Result 15, Processing Time 0.024 seconds

Changes in Interface Properties of TCO/a-Si:H Layer by Zn Buffer Layer in Silicon Heterojunction Solar Cells (실리콘 이종접합 태양전지의 Zn 확산방지층에 의한 TCO/a-Si:H 층간의 계면특성 변화)

  • Tark, Sung-Ju;Son, Chang-Sik;Kim, Dong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.341-346
    • /
    • 2011
  • In this study, we inserted a Zn buffer layer into a AZO/p-type a-si:H layer interface in order to lower the contact resistance of the interface. For the Zn layer, the deposition was conducted at 5 nm, 7 nm and 10 nm using the rf-magnetron sputtering method. The results were compared to that of the AZO film to discuss the possibility of the Zn layer being used as a transparent conductive oxide thin film for application in the silicon heterojunction solar cell. We used the rf-magnetron sputtering method to fabricate Al 2 wt.% of Al-doped ZnO (AZO) film as a transparent conductive oxide (TCO). We analyzed the electro-optical properties of the ZnO as well as the interface properties of the AZO/p-type a-Si:H layer. After inserting a buffer layer into the AZO/p-type a-Si:H layers to enhance the interface properties, we measured the contact resistance of the layers using a CTLM (circular transmission line model) pattern, the depth profile of the layers using AES (auger electron spectroscopy), and the changes in the properties of the AZO thin film through heat treatment. We investigated the effects of the interface properties of the AZO/p-type a-Si:H layer on the characteristics of silicon heterojunction solar cells and the way to improve the interface properties. When depositing AZO thin film on a-Si layer, oxygen atoms are diffused from the AZO thin film towards the a-Si layer. Thus, the characteristics of the solar cells deteriorate due to the created oxide film. While a diffusion of Zn occurs toward the a-Si in the case of AZO used as TCO, the diffusion of In occurs toward a-Si in the case of ITO used as TCO.

Photocatalytic Degradation of Methyl tert-Butyl Ether (MTBE): A review

  • Seddigi, Zaki S.;Ahmed, Saleh A.;Ansari, Shahid P.;Yarkandi, Naeema H.;Danish, Ekram;Oteef, Mohammed D.Y.;Cohelan, M.;Ahmed, Shakeel;Abulkibash, Abdallah M.
    • Advances in environmental research
    • /
    • v.3 no.1
    • /
    • pp.11-28
    • /
    • 2014
  • Advanced oxidation processes using UV and catalysts like $TiO_2$ and ZnO have been recently applied for the photocatalytic degradation of MTBE in water. Attempts have been made to replace the UV radiation by the solar spectrum. This review intends to shed more light on the work that has been done so far in this area of research. The information provided will help in crystallizing the ideas required to shift the trend from UV photocatalysis to sunlight photocatalysis. The careful optimization of the reaction parameters and the type of the dopant employed are greatly responsible for any enhancement in the degradation process. The advantage of shifting from UV photocatalysts to visible light photocatalysts can be observed when catalysts like $TiO_2$ and ZnO are doped with suitable metals. Therefore, it is expected that in the near future, the visible light photocatalysis will be the main technique applied for the remediation of water contaminated with MTBE.

A Study on the Properties of Al doped ZnO (AZO) Thin Films Deposited by RF Magnetron Sputtering (RF 마그네트론 스퍼터링으로 증착된 Al이 도핑 된 ZnO (AZO) 박막의 특성에 대한 연구)

  • Yun, Eui-Jung;Jung, Myung-Hee;Park, Nho-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.7
    • /
    • pp.8-16
    • /
    • 2010
  • In this paper, we investigated the effects of $O_2$ fraction on the properties of Al-doped ZnO (AZO) thin films prepared by radio frequency (RF) magnetron sputtering. Hall, photoluminescence (PL), and X-ray photoelectron spectroscopy (XPS) measurements revealed that the p-type conductivity was exhibited for AZO films with an $O_2$ fraction of 0.9 while the n-type conductivity was observed for films with $O_2$ fractions in range of 0 - 0.6. PL and XPS also showed that the acceptor-like defects, such as zinc vacancies and oxygen interstitials, increased in films prepared by an $O_2$ fraction of 0.9, resulting in the p-type conductivity in the films. Hall results indicated that AZO films prepared by $O_2$ fractions in range of 0 - 0.6 can be used for electrode layers in the applications of transparent thin film transistor. We concluded from the X-ray diffraction analysis that worse crystallinity with a smaller grain size as well as higher tensile stress was observed in the films prepared by a higher $O_2$ fraction, which is related to incorporation of more oxygen atoms into the films during deposition. The study of atomic force microscope suggested that the smoother surface morphology was observed in films prepared by using $O_2$ fraction, which causes the higher resistivity in those films, as evidenced by Hall measurements.

Investigation on Resistive Switching Characteristics of Solution Processed Al doped Zn-Tin Oxide film

  • Hwang, Do-Yeon;Park, Dong-Cheol;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.180-180
    • /
    • 2015
  • Solution processed Resistive random access memory (ReRAM)은 간단한 공정 과정, 고집적도, 저렴한 가격, 대면적화 플라즈마 데미지 최소화 등의 장점으로 차세대 비휘발성 메모리로 써 많은 관심을 받고 있으며, 주로 high-k 물질인 HfOx, TiOx, ZnO 가 이용 된다. IGZO와 ZTO와 같은 산화물 반도체는 높은 이동도, 대면적화, 넓은 밴드갭으로 인하여 투명한 장점으로 LCDs (Liquid crystal displays)에 이용 가능하며, 최근에는 IGZO와 ZTO에서 Resistive Switching (RS) 특성을 확인한 논문이 보고되면서 IGZO와 ZTO를 ReRAM의 switching medium와 TFT의 active material로써 동시에 활용하는 것에 많은 관심을 받고 있다. 이와 같은 산화물 반도체는 flat panel display 회로에 TFT와 ReRAM의 active layer로써 집적가능 하며 systems-on-panels (SOP)에 적용 가능하다. 하지만 IGZO 보다는 ZTO가 In과 Ga을 포함하지 않기 때문에 저렴하다. 그러므로 IGZO를 대신하는 물질로 ZTO가 각광 받고 있다. 본 실험에서는 ZTO film에 Al을 doping하여 메모리 특성을 평가하였다. 실험 방법으로는 p-type Si에 습식산화를 통하여 SiO2를 300 nm 성장시킨 기판을 사용하였다. 그리고 Electron beam evaporator를 이용하여 Ti를 10 nm, Pt를 100 nm 증착 한다. 용액은 Zn와 Tin의 비율을 1:1로 고정한 후 Al의 비율을 0, 0.1, 0.2의 비율로 용액을 각각 제작하였다. 이 용액을 이용하여 Pt 위에 spin coating방법을 이용하여 1000 rpm 10초, 6000 rpm 30초의 조건으로 AZTO (Al-ZnO-Tin-Oxide) 박막을 증착한 뒤, solvent 및 불순물 제거를 위하여 $250^{\circ}C$의 온도로 30분 동안 열처리를 진행하였다. 이후 Electron beam evaporator를 이용하여 top electrode인 Ti를 100 nm 증착하였다. 제작된 메모리의 전기적 특성은 HP 4156B semiconductor parameter analyzer를 이용하여 측정하였다. 측정 결과, AZTO (0:1:1, 0.1:1:1, 0.2:1:1)를 이용하여 제작한 ReRAM에서 RS특성을 얻었으며 104 s이상의 신뢰성 있는 data retention특성을 확인하였다. 그리고 Al의 비율이 증가할수록 on/off ratio가 증가하고 endurance 특성이 향상되는 것을 확인하였다. 결론적으로 Al을 doping함으로써 ZTO film의 메모리 특성을 향상 시켰으며 AZTO film을 메모리와 트랜지스터의 active layer로써 활용 가능할 것으로 기대된다.

  • PDF

Fabrication of P-type Transparent Oxide Semiconductor SrCu2O2 Thin Films by RF Magnetron Sputtering (RF 마그네트론 스퍼터링을 이용한 p 타입 투명전도 산화물 SrCu2O2 박막의 제조)

  • Seok, Hye-Won;Kim, Sei-Ki;Lee, Hyun-Seok;Lim, Tae-Young;Hwang, Jong-Hee;Choi, Duck-Kyun
    • Korean Journal of Materials Research
    • /
    • v.20 no.12
    • /
    • pp.676-680
    • /
    • 2010
  • Most TCOs such as ITO, AZO(Al-doped ZnO), FTO(F-doped $SnO_2$) etc., which have been widely used in LCD, touch panel, solar cell, and organic LEDs etc. as transparent electrode material reveal n-type conductivity. But in order to realize transparent circuit, transparent p-n junction, and introduction of transparent p-type materials are prerequisite. Additional prerequisite condition is optical transparency in visible spectral region. Oxide based materials usually have a wide optical bandgap more than ~3.0 eV. In this study, single-phase transparent semiconductor of $SrCu_2O_2$, which shows p-type conductivity, have been synthesized by 2-step solid state reaction at $950^{\circ}C$ under $N_2$ atmosphere, and single-phase $SrCu_2O_2$ thin films of p-type TCOs have been deposited by RF magnetron sputtering on alkali-free glass substrate from single-phase target at $500^{\circ}C$, 1% $H_2$/(Ar + $H_2$) atmosphere. 3% $H_2$/(Ar + $H_2$) resulted in formation of second phases. Hall measurements confirmed the p-type nature of the fabricated $SrCu_2O_2$ thin films. The electrical conductivity, mobility of carrier and carrier density $5.27{\times}10^{-2}S/cm$, $2.2cm^2$/Vs, $1.53{\times}10^{17}/cm^3$ a room temperature, respectively. Transmittance and optical band-gap of the $SrCu_2O_2$ thin films revealed 62% at 550 nm and 3.28 eV. The electrical and optical properties of the obtained $SrCu_2O_2$ thin films deposited by RF magnetron sputtering were compared with those deposited by PLD and e-beam.