• Title/Summary/Keyword: Al-Sn

Search Result 409, Processing Time 0.027 seconds

A Stud on the Fabrication and Characteristics of Al-Sn Alloy Strips by Twin-Roll Process (쌍롤법에 의한 Al-Sn합금 Strip의 제조 및 특성에 관한 연구)

  • Lee, Jeong-Keun;Joo, Dae-Heon;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.22 no.4
    • /
    • pp.174-183
    • /
    • 2002
  • Twin-roll process is a relatively new continuous casting process which can produce high-quality strip products directly, and solidification rate can reach $10^3$ to $10^4$ K/s, leading to fine and uniform microstructures with enhanced mechanical properties. The strip casting condition for producing fine Al-Sn alloy strip was obtained experimentally, and defects appearing on the strip was examined. Crack formation and surface quality of the strip was found to depend mainly on process parameters such as melt temperature, roller gap and rolling speed. Sn structure of network type was observed in Al-20Sn and Al-40Sn alloy strips, and cell spacing of Al-40Sn alloy was smaller than that of Al-20Sn. Banding strength of the heat treated specimens increased with increasing of soaking time and temperature, and bonding strength of Al-20Sn alloy was more superior than that of Al-40Sn alloy. However wear resistance of Al-40Sn alloy contained large amount of soft Sn which possess good anti-friction characteristics was superior than that of Al-20Sn alloy.

Effects of Intermetallic Compounds Formed during Flip Chip Process on the Interfacial Reactions and Bonding Characteristics (플립칩 공정시 반응생성물이 계면반응 및 접합특성에 미치는 영향)

  • Ha, Jun-Seok;Jung, Jae-Pil;Oh, Tae-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.2
    • /
    • pp.35-39
    • /
    • 2012
  • We studied interfacial reaction and bonding characteristics of a flip chip bonding with the viewpoint of formation behavior of intermetallic compounds. For this purpose, Sn-0.7Cu and Sn-3Cu solders were reflowed on the Al/Cu and Al/Ni UBMs. When Sn-0.7Cu was reflowed on the Al/Cu UBM, no intermetallic compounds were formed at the solder/UBM interface. The $Cu_6Sn_5$ intermetallic compounds formed by reflowing Sn-3Cu solder on the Al/Cu UBM were spalled from the interface, resulting in delamination of the solder/UBM interface. On the other hand, the $(Cu,Ni)_6Sn_5$ intermetallic compounds were formed by reflowing of Sn-0.7Cu and Sn-3Cu on the Al/Ni UBM and the interfacial bonding between the Sn-Cu solders and the Al/Ni UBM was kept stable.

Microstructural Control of Al-Sn Alloy with Addition of Cu and Si (Cu와 Si 첨가에 의한 Al-Sn 합금의 미세조직 제어)

  • Son, Kwang Suk;Park, Tae Eun;Kim, Jin Soo;Kang, Sung Min;Kim, Tae Hwan;Kim, Donggyu
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.3
    • /
    • pp.248-255
    • /
    • 2010
  • The effect of various alloying elements and melt treatment on the microstructural control of Al-Sn metallic bearing alloy was investigated. The thickness of tin film crystallized around primary aluminum decreased with the addition of 5% Cu in Al-Sn alloy, with tin particles being reduced in size by intervening the Ostwald ripening. With the addition of Si in Al-10%Sn alloy, the tin particles were crystallized with eutectic silicon, resulting in uniform distribution of tin particles. With the addition of Cu and Si in Al-Sn alloy, both the tensile strength and yield strength increased, with the increasing rate of yield strength being less than that of tensile strength. Although the Al-10%Sn-7%Si alloy has similar tensile strength compared with Al-10%Sn-5%Cu, the former showed superior abrasion resistance, resulting from preventing the tin particles from movement to the abrasion surface.

A study of joint properties of Sn-Cu-(X)Al(Si) middle-temperature solder for automotive electronics modules (자동차 전장부품을 위한 Sn-0.5Cu-(X)Al(Si) 중온 솔더의 접합특성 연구)

  • Yu, Dong-Yurl;Ko, Yong-Ho;Bang, Junghwan;Lee, Chang-Woo
    • Journal of Welding and Joining
    • /
    • v.33 no.3
    • /
    • pp.19-24
    • /
    • 2015
  • Joint properties of electric control unit (ECU) module using Sn-Cu-(X)Al(Si) lead-free solder alloy were investigated for automotive electronics module. In this study, Sn-0.5Cu-0.01Al(Si) and Sn-0.5Cu-0.03Al(Si) (wt.%) lead-free alloys were fabricated as bar type by doped various weight percentages (0.01 and 0.03 wt.%) of Al(Si) alloy to Sn-0.5Cu. After fabrications of lead-free alloys, the ball-type solder alloys with a diameter of 450 um were made by rolling and punching. The melting temperatures of 0.01Al(Si) and 0.03Al(Si) were 230.2 and $230.8^{\circ}C$, respectively. To evaluation of properties of solder joint, test printed circuit board (PCB) finished with organic solderability perseveration (OSP) on Cu pad. The ball-type solders were attached to test PCB with flux and reflowed for formation of solder joint. The maximum temperature of reflow was $260^{\circ}C$ for 50s above melting temperature. And then, we measured spreadability and shear strength of two Al(Si) solder materials compared to Sn-0.7Cu solder material used in industry. And also, microstructures in solder and intermetallic compounds (IMCs) were observed. Moreover, thickness and grain size of $Cu_6Sn_5$ IMC were measured and then compared with Sn-0.7Cu. With increasing the amounts of Al(Si), the $Cu_6Sn_5$ thickness was decreased. These results show the addition of Al(Si) could suppress IMC growth and improve the reliability of solder joint.

Effect of Sn Addition on the Fatigue Properties of Al-Cu-Mn Cast Alloy (Al-Cu-Mu 주조합금의 피로성질에 미치는 Sn 첨가의 영향)

  • Kim, Kyung-Hyun;Kim, Jeung-Dae;Kim, In-Bae
    • Korean Journal of Materials Research
    • /
    • v.12 no.4
    • /
    • pp.248-253
    • /
    • 2002
  • Effect of Sn addition on the fatigue properties of Al-Cu-Mn cast alloy was investigated by low and high cycle fatigue tests. Fatigue life showed the maximum value of 5450cycles in the Al-Cu-Mn alloy containing 0.10%Sn, but decreased rapidly beyond 0.20% of Sn additions. It was found that the fatigue strength was 132MPa and fatigue ratio was 0.31 in the alloy containing 0.10%Sn. Metallographic observation revealed that the fatigue crack initiated at the surface and propagated along the grain boundary. This propagation path was attributed to the presence of PFZ along the grain boundary. The tensile strength increased from 330MPa in 7he Sn-free Al-Cu-Mn cast alloy to 429MPa in the alloy containing 0.10%Sn. But above 0.20%Sn additions, tensile strength was decreased by the segregation of Sn.

Effect of Pt-Sn/Al2O3 catalysts mixed with metal oxides for propane dehydrogenation (프로판 탈수소 반응에 미치는 금속산화물과 혼합된 Pt-Sn/Al2O3 촉매의 영향)

  • Jung, Jae Won;Koh, Hyoung Lim
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.401-410
    • /
    • 2016
  • The $Pt-Sn/Al_2O_3$ catalysts mixed with metal oxides for propane dehydrogenation were studied. $Cu-Mn/{\gamma}-Al_2O_3$, $Ni-Mn/{\gamma}-Al_2O_3$, $Cu/{\alpha}-Al_2O_3$ was prepared and mixed with $Pt-Sn/Al_2O_3$ to measure the activity for propane dehydrogenation. As standard sample, $Pt-Sn/Al_2O_3$ catalyst mixed with glassbead was adopted. In the case of catalytic activity test after non-reductive pretreatment of catalyst and metal oxide, $Pt-Sn/Al_2O_3$ mixed with $Cu-Mn/{\gamma}-Al_2O_3$ showed higher conversion of 15% and similar selectivity at $576.5^{\circ}C$, compared to conversion of 8% in standard sample. In the case of catalytic activity test after reductive pretreatment of catalyst and metal oxde, $Cu/{\alpha}-Al_2O_3$ showed higer yield than standard sample. But, increase of yield of most of samples after reductive pretreatment was not significant, so it was found that lattice oxygen of $Cu-Mn/{\gamma}-Al_2O_3$ is effective to propane dehydrogenation.

The Effect of Ce Addition on Corrosion Behavior of Permanent Mold Casting Mg-4Al-2Sn-1Ca alloy (금형 주조한 Mg-4Al-2Sn-1Ca 합금의 부식 거동에 미치는 Ce 첨가의 영향)

  • Park, Kyung Chul;Kim, Byeong Ho;Jung, Jae Woong;Cho, Dae Hyun;Park, Ik Min
    • Journal of Korea Foundry Society
    • /
    • v.34 no.6
    • /
    • pp.187-193
    • /
    • 2014
  • In the present work, the effect of adding Ce on the corrosion behavior of Mg-4Al-2Sn-1Ca alloy was investigated. The studied alloys were fabricated by gravity casting method and a potentiodynamic polarization, A.C. impedance and hydrogen evolution tests were carried out in a 3.5% NaCl solution with pH 7.2 at room temperature to measure the corrosion properties of Mg-4Al-2Sn-1Ca-xCe alloys. The microstructure of the Mg-4Al-2Sn-1Ca alloy was composed of ${\alpha}$-Mg, Mg17Al12, Mg2Sn and CaMgSn phase. Also, a $Al_{11}Ce_3$ phase was newly formed by the addition of Ce. With an increase of the Ce contents, the microstructure became refined and the corrosion resistance improved.

Corrosion Properties of Al-(Ga, Sn, Mn) Alloy Anodes for an Al-air Battery in 4 M KOH Aqueous and Ethanol Solutions (4 M KOH 수용액 및 에탄올 용액에서 알루미늄 공기 전지용 Al-(Ga, Sn, Mn) 합금 음극의 부식 특성)

  • Lee, Han-Ok;Park, Chan-Jin;Jang, HeeJin
    • Corrosion Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.71-75
    • /
    • 2011
  • Corrosion properties of Al-0.3Ga-0.3Sn, Al-0.3Mn-0.3Ga, and Al-0.3Mn-0.3Sn alloys were examined to develop an anode material for Al-air battery with alkaline aqueous or ethanol electrolyte. The results of potentiodynamic polarization tests showed that the electrode potential of the Al alloys were lower than the pure Al, implying the cell voltage can be increased by using one of these alloys for an anode in 4 M KOH aqueous solution. The corrosion rate appeared to be increased by alloying Ga but to be reduced by Sn and Mn in the aqueous solution. The ethanol solution is expected to improve the cell performance in that the electrode potential and the corrosion rate of Al were lower in ethanol solution than in aqueous solution. However the Al-(Ga, Sn, Mn) alloys are not favorable in ethanol solution because of the high potential and corrosion rate.

Effect of Sn Addition on Creep Resistance of AZ91-0.4%Ca Alloy (AZ91-0.4%Ca 합금의 크립저항성에 미치는 Sn 첨가의 영향)

  • Jun, Joong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.27 no.4
    • /
    • pp.185-190
    • /
    • 2014
  • The influences of small amount of Sn addition on microstructure and creep resistance of AZ91-0.4%Ca alloy have been investigated. The microstructure of the AZ91-0.4%Ca alloy was characterized by ${\alpha}$-(Mg) dendrite cells surrounded by eutectic ${\beta}(Mg_{17}Al_{12})$ and $Al_2Ca$ phases. The 0.5%Sn addition resulted in the formation of rod-shaped CaMgSn particles with the extinction of $Al_2Ca$. The Sn-containing alloy exhibited better creep resistance below $175^{\circ}C$, but the tendency was reversed above $200^{\circ}C$. The reason was discussed in relation to the change in thermal stability of ${\beta}$ phase in response to the Sn addition.

Effect of Tin Addition on the Melting Temperatures and Mechanical Properties of Al-Si-Cu Brazing Filler Metals (저온 브레이징용 Al-Si-Cu 합금의 Sn 첨가에 따른 융점 및 기계적 특성 변화 연구)

  • Kim, Min Sang;Park, Chun Woong;Byun, Jong Min;Kim, Young Do
    • Korean Journal of Materials Research
    • /
    • v.26 no.7
    • /
    • pp.376-381
    • /
    • 2016
  • For the development of a low-melting point filler metal for brazing aluminum alloy, we analyzed change of melting point and wettability with addition of Sn into Al-20Cu-10Si filler metal. DSC results showed that the addition of 5 wt% Sn into the Al-20Cu-10Si filler metal caused its liquidus temperature to decrease by about 30 oC. In the wettability test, spread area of melted Al-Cu-Si-Sn alloy is increased through the addition of Sn from 1 to 5 wt%. For the measuring of the mechanical properties of the joint region, Al 3003 plate is brazed by Al-20Cu-10Si-5Sn filler metal and the mechanical property is measured by tensile test. The results showed that the tensile strength of the joint region is higher than the tensile strength of Al 3003. Thus, failure occurred in the Al 3003 plate.