• Title/Summary/Keyword: Al-Si-Cu

Search Result 496, Processing Time 0.035 seconds

Optimal Double Heat Treatment Process to Improve the Mechanical Properties of Lightweight AlSiCu Alloy (자동차 경량소재 AlSiCu 합금의 기계적 특성을 개선하기 위한 최적의 이중 열처리공정)

  • Park, Sang-Gyu;Kim, Chung-Seok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.3
    • /
    • pp.102-108
    • /
    • 2018
  • The objective of this study is to develop the mechanical properties of an AlSiCu aluminum alloy using the two-step solution heat treatment. The microstructure of the gravity casting specimen represents a typical dendrite structure with a secondary dendrite arm spacing (SDAS) of 40 um. In addition to the Al matrix, a large amount of coarsen eutectic Si phase, $Al_2Cu$ intermetallic phase, and Fe-rich phases is generated. The eutectic Si phases are fragmented and globularized with the solution heat treatment. The $Al_2Cu$ intermetallic phase is also resolutionized into the Al matrix. The $2^{nd}$ solution temperature at $525^{\circ}C$ may be an optimal condition to enhance the mechanical properties of the AlSiCu aluminum alloy.

Change in Thermal Diffusivity of Al-Si-Mg-Cu Alloy According to Heat Treatment Conditions at Automotive Engine Operating Temperature (Al-Si-Mg-Cu 합금의 자동차 엔진 사용 온도에서 열처리 조건에 따른 열확산도 변화)

  • Choi, Se-Weon
    • Korean Journal of Materials Research
    • /
    • v.31 no.11
    • /
    • pp.642-648
    • /
    • 2021
  • The precipitation effect of Al-6%Si-0.4%Mg-0.9%Cu-(Ti) alloy (in wt.%) after various heat treatments was studied using a laser flash device (LFA) and differential scanning calorimetry (DSC). Solid solution treatment was performed at 535 ℃ for 6 h, followed by water cooling, and samples were artificially aged in air at 180 ℃ and 220 ℃ for 5 h. The titanium-free alloy Al-6%Si-0.4%Mg-0.9%Cu showed higher thermal diffusivity than did the Al-6%Si-0.4%Mg-0.9%Cu-0.2%Ti alloy over the entire temperature range. In the temperature ranges below 200 ℃ and above 300 ℃, the value of thermal diffusivity decreased with increasing temperature. As the sample temperature increased between 200 ℃ and 400 ℃, phase precipitation occurred. From the results of DSC analysis, the temperature dependence of the change in thermal diffusivity in the temperature range between 200 ℃ and 400 ℃ was strongly influenced by the precipitation of θ'-Al2Cu, β'-Mg2Si, and Si phases. The most important factor in the temperature dependence of thermal diffusivity was Si precipitation.

Wetting improvement of SiC/Al Metal Matrix Composite by Cu Surface Treatment (보강재에 도금된 Cu층이 Al/SiC복합재료의 젖음성에 미치는 영향)

  • Lee, Gyeong-Gu;Jo, Gyu-Jong;Lee, Do-Jae
    • Korean Journal of Materials Research
    • /
    • v.11 no.5
    • /
    • pp.398-404
    • /
    • 2001
  • Effects of coating treatment of metallic Cu film on SiC for Al/SiC composite were studied. The Copper was deposited on SiC by electroless plating method. Al/sic composite was fabricated at temperature range of $670^{\circ}C$ to 90$0^{\circ}C$ under vacuum atmosphere. The wetting behavior of Al/SiC composite were analysed by SEM and XRD. The coating treatment on SiC improved wettability of Al melt on SiC considerably comparing to the non coated SiC. This improved wettability seems strongly concerned to the increase of chemical reactivity between coated layer and Al matrix. The improvement of wettability of Al melt on the Cu coated SiC was closely related to in the initial stage of reaction. The metallic film played an important role in reducing the interfacial free energy and breaking down the aluminum oxide film through the reaction with Al melt. The wetting behavior of the as-received SiC with Al melt was not uniform, indicated by the contact angles from less than $97^{\circ}$to more than $97^{\circ}$.

  • PDF

Effect of Stuffing of TiN on the Diffusion Barrier Property (II) : Cu/TiN/Si Structure (TiN의 충진처리가 확산방지막 특성에 미치는 영향(II) : Cu/TiN/Si 구조)

  • Park, Gi-Cheol;Kim, Gi-Beom
    • Korean Journal of Materials Research
    • /
    • v.5 no.2
    • /
    • pp.169-177
    • /
    • 1995
  • The diffusion barrier property of 100-nm-thick titanium nitride (TiN) film between Cu and Si was investigated using sheet resistance measurements, etch-pit observation, x-ray diffractometry, Auger electron spectroscopy, and transmission electron microscopy. The TiN barrier fails due to the formation of crystalline defects (dislocations) and precipitates (presumably Cu-silicides) in the Si substrate which result from the predominant in-diffusion of Cu through the TiN layer. In contrast with the case of Al, it is identified that the TiN barrier fails only the in-diffusion of Cu because there is no indication of Si pits in the Si substrate. In addition, it appears that the stuffing of TiN does not improve the diffusion barrier property in the Cu/TiN/Si structure. This indicates that in the case of Al, the chemical effect that impedes the diffusion of Al by the reaction of Al with $TiO_{2}$ which is present in the grain boundaries of TIN is very improtant. On the while, in the case of Cu, there is no chemical effect because Cu oxides, such as $Cu_{2}O$ or CuO, is thermodynamically unstable in comparison with $TiO_{2}$. For this reason, it is considered that the effect of stuffing of TiN on the diffusion barrier property is not significant in the Cu/ TiN/Si structure.

  • PDF

Microstructure of Rheocompocast Al-Cu-Ti/SiCp composite (Rheocompocasting한 Al-Cu-Ti/SiCp 복합재료의 조직)

  • Yoon, Yeo-Chang;Choe, Jung-Chul;Hong, Sung-Kil
    • Journal of Korea Foundry Society
    • /
    • v.15 no.4
    • /
    • pp.368-376
    • /
    • 1995
  • An Al-composite material was fabricated with using the rheocompocasting process and the microstructure of the Al-Cu/SiCp composite material was investigated depending on the stirring times and the amount of Ti additions. The distribution of SiC dispersion shows the good result at the stirring time of 30 min. The degree of microdistribution of the $Al_2Cu$ and SiCp is improved when the amount of Ti addition is increased. At the compositon of 0.3%Ti, the primary solid is the compound of $Al_3Ti$ and no exist of the SiCp and $Al_2Cu$ phase around the primary $Al_3Ti$. In the process of compositization, SiCp is found at the primary and final solid parts and is found at the final solid part after remelting. $Al_2Cu$ and SiCp are distributed around and outside of dendrite or independently after remelting, which is different from the process of compositization.

  • PDF

Effect of Solution Treatment Conditions on the Microstructure and Hardness Changes of Al-7Si-(0.3~0.5)Mg-(0~0.5)Cu Alloys (Al-7Si-(0.3~0.5)Mg-(0~0.5)Cu 합금의 미세조직 및 경도 변화에 미치는 용체화 처리 조건의 영향)

  • Sung-Bean Chung;Min-Su Kim;Dae-Up Kim;Sung-Kil Hong
    • Journal of Korea Foundry Society
    • /
    • v.42 no.6
    • /
    • pp.337-346
    • /
    • 2022
  • In order to optimize the solution treatment conditions of Al-7Si-(0.3~0.5)Mg-(0~0.5)Cu alloys, a series of heat treatment experiments were conducted under various solution treatment times up to 7 hours at 545℃, followed by a microstructural analysis using optical microscopy, FE-SEM, and Brinell hardness measurements. Rapid coarsening of eutectic Si particles was observed in the alloys during the first 3 hours of solution treatment but the size of those Si particles did not change at longer solution treatment conditions. Meanwhile, the degree of spheroidisation of eutectic Si particles increased until the solution treatment time was increased up to 7 hours. Q-Al5Cu2Mg8Si6 andθ-Al2Cu were observed in as-cast Cu-containing Al alloys but the intermetallic compounds were dissolved completely after 3 hours of solution treatment at 545℃. Depending on the initial Mg composition of the Al alloys, π-Al8FeMg3Si either disappeared in the alloy with 0.3wt% of Mg content after 5 hours of solution treatment or remained in the alloy with 0.5wt% of Mg content after 7 hours of solution treatment time. Mg and Cu content in the primary-α phase of the Al alloys increased until the solution treatment time reached 5 hours, which was in accordance with the dissolution behavior of Mg or Cu-containing intermetallic compounds with respect to the solution treatment time. From the results of microstructural changes in the Al-7Si-Mg-Cu alloys during solution treatment, it was concluded that at least 5 hours of solution treatment at 545℃ is required to maximize the age hardening effect of the present Al alloys. The same optimal solution treatment conditions could also be derived from Brinell hardness values of the present Al-7Si-Mg-Cu alloys measured at different solution treatment conditions.

Effects of the Non-equilibrium Heat-treatment on Modification of Microstructures of Al-Si-Cu Cast Alloy (비평형 열처리에 의한 주조용 Al-Si-Cu합금 조직의 개량 효과)

  • Kim, Heon-Joo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.6
    • /
    • pp.391-397
    • /
    • 2000
  • Addition of Ca element and nonequilibrium heat treatment which promotes shape modification of eutectic Si and ${\beta}$ intermetallic compound were conducted to improve the mechanical properties of Al-Si-Cu alloy. Modification of eutectic Si and dissolution of needle-shape ${\beta}$ intermetallic compounds were possible by nonequilibrium heat treatment in which specimens were held at $505^{\circ}C$ for 2 hours in Al-Si-Cu alloy with Fe. Owing to the decrease in aspect ratio of eutectic Si by the heat treatment of the alloy with 0.33wt.% Fe, the increase in elongation was prominent to be more than double that in the as-cast specimen. Dissolution of needle-shape ${\beta}$ intermetallic compounds in the alloy with 0.85wt.% Fe led to the improvement of tensile strength as the length of ${\beta}$ compounds decreased to 50%.

  • PDF

The Effects of Dielectric Passivation Overlayers for Submicron Thin Film Metallizations of ULSI Semiconductor Devices (초고집적 Submicron 박막금속화를 위한 Dielectric Overlayer의 Passivation 효과)

  • 김대일;김진영
    • Journal of the Korean Vacuum Society
    • /
    • v.3 no.1
    • /
    • pp.59-64
    • /
    • 1994
  • 극소전자 디바이스의 고집적화와 더불어 박막배선의 선폭은 0.5$\mu$m이하까지 축소되며 초고집적 submicron 박막금속화가 진행되고 있다. 미세회로에 적용되어지는 배선재료는 인가되는 고전류밀도로 인하여 electromigration 에 의한 결함이 쉽게 발생한다는 단점이있다. 금속박막 전도체위의 dielectric overlayer는 electromigration 에 대한 passivation 효과를 보여 극소전자 디바이스의 평균수명을 향상시 킨다.본 연구에서는 박막금속화에서 dielectric overlayer의 passivation 효과를 알아보기 위하여 약 3000 $\AA$ 두께의 Al,Al-1%Si, Ag 그리고 Cu 박막배선위에 증착하여 SiO2절연보호막의 유무에 따른 박막배선 의 수명변화 및 신뢰도를 측정하였다. 박막배선에 인가된 전류밀도는 1x106 A/cm2와 1x107 A/cm2 이었다. SiO2 dielectric overlayer는 Al,Al-1%Si Ag. Cu 박막배선에서는 electromigration에 대한 보호막 혀과를 보이며 평균수명을 모두 향상시킨다. SiO2 passivation 효과는 Al, Ag, Cu 박막중 Cu 박막배선에서 가 장 크게 나타났다. SiO2 dielectric overlayer가 형성되지 않은 경우 Al 박막배선의 수명이 가장 긴 것으 로 나타났으나 SiO2 가 형성된 경우는 Cu 박막배선의 수명이 가장 길게 나타났다.

  • PDF