• Title/Summary/Keyword: Al-STS steel

Search Result 63, Processing Time 0.021 seconds

Magnetic Pulsed Compaction and Sintering Characteristics of Al Composite Powders Reinforced with Waste Stainless Steel Short Fibers (폐 스테인레스강 단섬유로 강화한 알루미늄 복합분말의 자기펄스압 성형 및 소결 특성)

  • Hyun, Chang-Yong;Won, Chul-Hyun;Park, Jae-Soon
    • Journal of Powder Materials
    • /
    • v.14 no.6
    • /
    • pp.380-385
    • /
    • 2007
  • Characteristics of Al-based composites with waste stainless steel short fiber, fabricated by magnetic pulsed compaction and sintering were investigated. The compacts prepared by magnetic pulsed compaction showed high relative density and homogeneous microstructure compared with that by conventional press compaction. The relative density of sintered composites at $430^{\circ}C$ for 1 h exhibited the same value with compacts and decreased with increase in STS short fiber content. The reaction between Al and STS phase was confirmed by the microstructural analysis using EDS. The sintered composites, prepared by magnetic pulsed compaction, showed increased hardness value with increasing STS fiber content. Maximum yield strength of 100 MPa and tensile strength of 232 MPa were registered in the AI-based composite with 30 vol% STS short fiber.

A Study on the Ceramic Coating of Biopsy Needle (조직생검용 Needle의 세라믹 코팅에 관한 연구)

  • Cho, Sung-Man;Chung, Hyup-Jae;Kim, Man-Tae;Rhee, Kyong-Yop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.9
    • /
    • pp.121-126
    • /
    • 2009
  • Stainless steel 316L (STS 316L) is widely used as a material of biopsy needle. However it has a side effect that tissue can be damaged by electrochemical operation between tissue and STS 316L. Many studies have been made on the ceramic coating of biopsy needle to reduce the side effect. In this study, STS 316L was coated with three bioceramics, $Al_2O_3$, $SiO_2$ and $ZrO_2$ using a RF magnetron sputtering method. The effects of ceramic coating on the electrical conductivity and coating strength of ceramic-coated STS 316L were investigated. The results showed that the electrical conductivity of ceramic-coated STS 316L was much lower than that of uncoated STS 316L. The coating strength of $ZrO_2$-coated STS 316L was 30% and 70% higher, respectively than those of $Al_2O_3$-coated STS 316L and $SiO_2_3$-coated STS 316L.

Evaluation of Corrosion Resistance on Al-Cr Coated Stainless Steel Separator for MCFC at Anode Side (MCFC 양극측에서 Al-Cr피복 스테인레스강 분리판의 내식성평가)

  • Lee, M.H.;Yoon, J.S.;Bae, I.S.;Yoon, D.J.;Kim, B.I.;Park, H.H.
    • Korean Journal of Materials Research
    • /
    • v.13 no.2
    • /
    • pp.126-132
    • /
    • 2003
  • In order to evaluate the corrosion resistance at the anode side separator for molten carbonate fuel cell, STS316 and SACC-STS316 (chromium and aluminum were simultaneously deposited by diffusion into STS316 authentic stainless steel substrate by pack-cementation process) were applied as the separator material. In case of STS316, corrosion proceeded via three steps ; a formation step of corrosion product until stable corrosion product, a protection step against corrosion until breakaway occurs, a advance step of corrosion after breakaway. Especially, STS316 would be impossible to use the separator without suitable surface modification because of rapid corrosion rate after formation of corrosion product, occurs the severe problem on stability of cell during long-time operation. Whereas, SACC-STS316 was showed more effective corrosion resistance than the present separator, STS316 due to the intermetallic compound layer such as NiAl, Ni3Al formed on the surface of STS316 specimen. And it is anticipated that, in order to use SACC-STS316 alternative separator at the anode side, coating process, which can lead to dense coating layer, has to be developed, and by suitable pre-treatment before using it, very effective corrosion resistance will be achieved.

Block Shear Behavior of Cold-Formed Duplex Stainless Steel (STS329FLD) Welded Connection with Base Metal Fracture (냉간성형 듀플렉스계 스테인리스강(STS329FLD) 용접접합부 모재 블록전단파단 거동)

  • Hwang, BoKyung;Kim, TaeSoo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.4
    • /
    • pp.157-165
    • /
    • 2019
  • Recently, lean duplex stainless steel, STS329FLD with less nickel (reduced to 0.5~1.5%) has been developed as a substitute of austenitic stainless steel (8%~10.5% nickel in STS304) and included in Korean standards (KS). This paper investigates the block shear behavior of cold-formed duplex stainless steel (STS329FLD, nominal plate thickness of 1.5mm) fillet-welded connection with base metal fracture. Main variables are weld lengths in the longitudinal and the transverse directions of applied force ranged from 20mm to 50mm. As a result, specimens failed by typical block shear facture (the combination of gross section tensile fracture and shear fracture or shear yielding) and ultimate strength of the specimens got higher with the increase of weld length. Block shear fracture strengths predicted by current design specifications (KBC2016/AISC2016 and EC3) and existing proposed equations for welded connections by Topkaya, Oosterhof & Driver and Lee et al. were compared with test strengths. KBC2016/AISC2016 and EC3 design specifications underestimated block shear strength of STS329FLD welded connections by on average 24%, 29%, respectively and Oosterhof & Driver, Topkaya and Lee et al's equations overestimated the ultimate strength of the welded connection by the range of 3% to 44%.

Effect of Interfacial Reaction Layer on Mechanical Properties of 3-plyMg/Al/STS Clad-metal (Mg/Al/STS 3층 클래드재의 기계적 특성에 미치는 계면반응층의 영향)

  • Kim, In-Kyu;Song, Jun-Young;Lee, Young Sun;Hong, Sun Ig
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.8
    • /
    • pp.664-670
    • /
    • 2011
  • 3-ply Mg/Al/STS clad-metal was fabricated by the roll bonding process. An interfacial reaction layer was formed at the Mg/Al interface at and above $300^{\circ}C$ whereas no interfacial reaction layer was observed up to $400^{\circ}C$. The effect of the interfacial reaction layer on the mechanical and fracture properties in clad metals after heat treatments were investigated The chemical compositions were analyzed at the Mg/Al interface by an Energy dispersive X-ray analysis (EDX). A tension test was performed to examine the interfacial cracking properties. The Mg layer fractured first, causing a sudden drop of the stress and Al/STS layer continued to deform until the final fracture. Periodic cracks and crack propagation was observed at the reaction layer between Mg and Al.

A Study on the Erosion Behavior of the Ceramic Sprayed Coating Layer in the Molten 55% Al-Zn (용융 55%Al-Zn 중에서 세라믹 용사 피막의 침식 거동에 관한 연구)

  • 강태영;임병문;최장현;김영식
    • Journal of Welding and Joining
    • /
    • v.18 no.3
    • /
    • pp.51-59
    • /
    • 2000
  • Sink roll has been used in molten 55%Al-Zn alloy bath of continuous galvanizing line for sinking and stabilizing working steel strip in molten metal bath. In the process, the sink roll body inevitably build up dross compounds and pitting on the sink roll surface during 55%Al-Zn alloy coated strip production, and the life time of the sink roll is shorten by build up dross compounds and pitting. The present study examined the application of thermally sprayed ceramic coatings method on sink roll body for improving erosion resistance at molten 55% Al-Zn pool. In this experiment, the stainless steels such as STS 316L and STS 430F were used as the substrate materials. The CoNiCr and WE-Co powder were selected as bond coating materials. Moreover $Al_2O_3-ZrO_2-SiO_2 and ZrO_2-SiO_2$ powders selected as the top coating materials. Appearances of the specimens before and after dipping to molten 55%Al-Zn pool were compared and analyzed. As a result of this study, STS430F of substrate, WC-Co of bond spray coatings, $ZrO_2-SiO_2$ power of top spray coatings is the best quality in erosion resistance test at molten 55%Al-Zn pool

  • PDF

High Temperature Salt Corrosion Property of Ferritic Stainless Steels (페라이트계 스테인리스강의 고온염 부식특성에 관한 연구)

  • Song, Jeon-Young;Park, Joong-Cheol;Ahn, Yong-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.860-866
    • /
    • 2009
  • It is very important to choose optimal material having good corrosion resistance and capabilities for the part materials such as the automotive exhaust system under a hot salt corrosion atmosphere. Generally, two types of corrosion come into the automotive exhaust system. One is 'Condensate Corrosion', which is occurred by exhaust gas condensate formed at the inner surface of exhaust system heated up during driving, which results in the acid condensate pitting. The other is 'High Temperature Salt Corrosion' occurring from the interaction between the chloride ion coming from salt at the seaside district or snow salt and the outer surface of exhaust system. By the corrosion attack, the main muffler is firstly damaged and the life cycle of an automobile is significantly decreased. It has been investigated that the hot salt corrosion properties of a STS 409L and 436L ferritic stainless steels which are well-known for the materials of the automotive exhaust system. In addition, the corrosion properties of hot dip aluminum coated STS 409L have been compared with uncoated steels. Aluminum coated STS 409L showed a superior corrosion resistance than uncoated STS 409L, and futhermore showed a better corrosion resistance than a STS 436L, which is an expensive ferritic stainless steel having a excellent corrosion resistance caused from more chromium content of an alloying element.

Study of Practical Cathodic Protection of 2nd Class Stainless Steel Shaft by means of Al Sacrificial Anode (AL계 희생양극에 의한 2종스테인리스 강축의 음극방식 실용화 연구)

  • Son, Yeong-Tae;Lee, Myeong-Hun;Lee, Hui-Jun
    • Journal of Korea Ship Safrty Technology Authority
    • /
    • s.22
    • /
    • pp.34-53
    • /
    • 2007
  • In the case of hull material. large sized merchant ships are made of steel, on the other hand FRP or wood are used for small sized fishing boats. At present in Korea approximately 88,500 fishing boats are in operation of which 70% are made of FRP In the meantime, stainless steel is frequently used as shaft materials of the small-size FRP fishing boat. Namely, the kinds of shaft materials are STS 304(18Cr-8Ni), STS 316(18Cr-12Ni-2.5Mo steel) and STS 630(17Cr-Ni-Nb steel)etc. Among these things, STS 304 which is the cheapest and having ordinary corrosion resistance is most widely used as 2nd class shaft material. But, using STS 304 for shaft system material of the small-size FRP fishing boat on seawater environments entails a severe corrosion which causes shaft system troubles. Particularly, the corrosions tend to be concentrated of the stern and bow side, propeller shaft surface of inside of stern tube and the boat having no stern cooling pipe line system. As a solution for those problems, research on the ways to mitigate corrosion on the part of 2nd class stainless steel shaft have been undertaken. In the result, not only clarification for the reason of corrosion of the part of stainless steel shaft used mainly for the small-size FRP fishing boat was done, but also most optimal corrosion protection system was developed by experimenting shaft's protection simulation based of the electrochemical cathodic protection principle. In addition, verification through the field test on the optimal cathodic corrosion protection method by means of aluminum sacrificial anode was carried out. In this study, effective and economical shaft's protection system is suggested to the small-size FRP fishing boat operator by substantiating the results obtained from the research on the optimal cathodic protection.

  • PDF