• Title/Summary/Keyword: Al-Fe-Cr-Ti

Search Result 148, Processing Time 0.025 seconds

Estimate of Regional and Broad-based Sources for PM2.5 Collected in an Industrial Area of Japan

  • Nakatsubo, Ryouhei;Tsunetomo, Daisuke;Horie, Yosuke;Hiraki, Takatoshi;Saitoh, Katsumi;Yoda, Yoshiko;Shima, Masayuki
    • Asian Journal of Atmospheric Environment
    • /
    • v.8 no.3
    • /
    • pp.126-139
    • /
    • 2014
  • In order to estimate the influence of sources on $PM_{2.5}$ in the industrial area of Japan, we carried out a source analysis using chemical component data of $PM_{2.5}$. $PM_{2.5}$ samples were collected intermittently at an industrial area in Japan from July 2010 to November 2012. Water soluble ions ($Cl^-$, $NO_3{^-}$, $SO{_4}^{2-}$, $Na^+$,$NH_4{^+}$, $K^+$, $Mg^{2+}$, $Ca^{2+}$), elements (Al, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd, Sb, Pb), and carbonaceous species (OC, EC) of the $PM_{2.5}$ (a total of 198 samples) were analyzed. Positive Matrix Factorization (PMF) model was applied to the data of those chemical components to identify the source of $PM_{2.5}$. At this observation site, nine factors were extracted. The major contributors of $PM_{2.5}$ were secondary sulfate 1, in which loading factors of $SO{_4}^{2-}$ and $NH_4{^+}$ were large (percentage source contribution: 20.9%), traffic, in which loading factors of OC (organic carbon) and EC (elemental carbon) were large (20.8%), secondary sulfate 2, in which loading factors of K and $SO{_4}^{2-}$ were large (8.0%), steel mills (7.8%), secondary chloride and nitrate (7.0%), soil (5.0%), heavy oil combustion (3.8%), sea salt (3.8%), and coal combustion (2.3%). The conditional probability function (CPF) and the potential source contribution function (PSCF) were carried out to examine the influence of a regional source and a broad-based source, respectively. CPF results supported local source influences such as steel mills, sea salt, traffic, coal combustion, and heavy oil combustion. PSCF results suggested that ships in the East China Sea, an industrial area of the east coastal region of China, and an active volcano in the Kyushu region of Japan were potential regional sources of secondary sulfate 1. Secondary sulfate 2 was affected by the burning of biomass fields and by coal combustion in Chinese urban areas such as Beijing, Hebei, and western Inner Mongolia. Source characterization using continuous data from one site showed a potential source representing fossil fuel combustion is affected both by regional and broad-based sources.

Characteristics of the Number and the Mass Concentrations and the Elemental Compositions of PM10 in Jeju Area (제주지역 PM10의 수농도 및 질량농도와 원소성분 조성 특성)

  • Kang, Chang-Hee;Hu, Chul-Goo
    • Journal of Environmental Science International
    • /
    • v.23 no.3
    • /
    • pp.447-457
    • /
    • 2014
  • The number concentrations, the mass concentrations and the elemental concentrations of $PM_{10}$ have measured at Gosan site in Jeju, Korea, from March 2010 to December 2010. And the correlation and the factor analysis for the number, the mass and the elemental concentrations of $PM_{10}$ are performed to identify their relationships and sources. The average $PM_{10}$ number concentration is observed $246\;particles/cm^3$($35.7{\sim}1,017\;particles/cm^3$) and the average $PM_{10}$ mass concentration is shown $50.1{\mu}g/m^3$($16.7{\sim}441.4{\mu}g/m^3$) during this experimental period. The number concentrations are significantly decreased with increasing particle size, hence the concentrations for the smaller particles less than $2.5{\mu}m$($PM_{2.5}$) are contributed 99.6% to the total $PM_{10}$ number concentrations. The highest concentration of the 20 elements in $PM_{10}$ determined in this study is shown by S with a mean value of $1,497ng/m^3$ and the lowest concentration of them is found by Cd with a mean value of $0.57ng/m^3$. The elements in $PM_{10}$ are evidently classified into two group based on their concentrations: In group 1, including S>Na>Al>Fe>Ca>Mg>K, the elemental mean concentrations are higher than several hundred $ng/m^3$, on the other hand, the concentrations are lower than several ten $ng/m^3$ in group 2, including Zn>Mn>Ni>Ti>Cr>Co>Cu>Mo>Sr>Ba>V>Cd. The size-separated number concentrations are shown positively correlated with the mass concentrations in overall size ranges, although their correlation coefficients, which are monotonously increased or decreased with size range, are not high. The concentrations of the elements in group 1 are shown highly correlated with the mass concentrations, but the concentrations in group 2 are shown hardly correlated with the mass concentrations. The elements originated from natural sources have been predominantly related to the mass concentrations while the elements from anthropogenic sources have mainly affected on the number concentrations of $PM_{10}$.

A Comparative Study on PM10 Source Contributions in a Seoul Metropolitan Subway Station Before/After Installing Platform Screen Doors (서울시 지하철 승강장의 스크린도어 설치 전·후 PM10 오염원의 기여도 비교 연구)

  • Lee, Tae-Jung;Jeon, Jae-Sik;Kim, Shin-Do;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.5
    • /
    • pp.543-553
    • /
    • 2010
  • Almost five million citizens a day are using subways as a means of traffic communication in the Seoul metropolitan. As the subway system is typically a closed environment, indoor air pollution problems frequently occurs and passengers complain of mal-health impact. Especially $PM_{10}$ is well known as one of the major pollutants in subway indoor environments. The purpose of this study was to compare the indoor air quality in terms of $PM_{10}$ and to quantitatively compare its source contributions in a Seoul subway platform before and after installing platform screen doors (PSD). $PM_{10}$ samples were collected on the J station platform of Subway Line 7 in Seoul metropolitan area from Jun. 12, 2008 to Jan. 12, 2009. The samples collected on membrane filters using $PM_{10}$ mini-volume portable samplers were then analyzed for trace metals and soluble ions. A total of 18 chemical species (Ba, Mn, Cr, Cd, Si, Fe, Ni, Al, Cu, Pb, Ti, $Na^+$, $NH_4^+$, $K^+$, $Mg^{2+}$, $Ca^{2+}$, $Cl^-$, and ${SO_4}^{2-}$) were analyzed by using an ICP-AES and an IC after performing proper pre-treatments of each sample filter. Based on the chemical information, positive matrix factorization (PMF) model was applied to identify the source of particulate matters. $PM_{10}$ for the station was characterized by three sources such as ferrous related source, soil and road dust related source, and fine secondary aerosol source. After installing PSD, the average $PM_{10}$ concentration was decreased by 20.5% during the study periods. Especially the contribution of the ferrous related source emitted during train service in a tunnel route was decreased from 59.1% to 43.8% since both platform and tunnel areas were completely blocked by screen doors. However, the contribution of the fine secondary aerosol source emitted from various outside combustion activities was increased from 14.8% to 29.9% presumably due to ill-managed ventilation system and confined platform space.

Identification of Atmospheric PM10 Sources and Estimating Their Contributions to the Yongin-Suwon Bordering Area by Using PMF (PMF모델을 이용한 용인.수원 경계지역에서 PM10 오염원의 확인과 상대적 기여도의 추정)

  • Lee, Hyung-Woo;Lee, Tae-Jung;Yang, Sung-Su;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.4
    • /
    • pp.439-454
    • /
    • 2008
  • The purpose of this study was to extensively identify $PM_{10}$ sources and to estimate their contributions to the study area, based on the analysis of the $PM_{10}$ mass concentration and the associated inorganic elements, ions, and total carbon. The contribution of $PM_{10}$ sources was estimated by applying a receptor method because identifying air emission sources were effective way to control the ambient air quality. $PM_{10}$ particles were collected from May to November 2007 in the Yongin-Suwon bordering area. $PM_{10}$ samples were collected on quartz filters by a $PM_{10}$ high-volume air sampler. The inorganic elements (Al, Mn, V, Cr, Fe, Ni, Cu, Zn, Cd, Pb, Si, Ba, Ti and Ag) were analyzed by an ICP-AES after proper pre-treatments of each sample. The ionic components of these $PM_{10}$ samples ($Cl^_$, $NO_3^-$, $SO_4^{2-}$, $Na^+$, $NH_4^+$, $K^+$, $Ca^{2+}$, and $Mg^{2+}$) were analyzed by an IC. The carbon components (OC1, OC2, OC3, OC4, OP, EC1, EC2 and EC3) were also analyzed by DRI/OGC analyzer. Source apportionment of $PM_{10}$ was performed using a positive matrix factorization (PMF) model. After performing PMF modeling, a total of 8 sources were identified and their contribution were estimated. Contributions from each emission source were as follows: 13.8% from oil combustion and industrial related source, 25.4% from soil source, 22.1% from secondary sulfate, 12.3% from secondary nitrate, 17.7% from auto emission including diesel (12.1%) and gasoline (5.6%), 3.1% from waste incineration and 5.6% from Na-rich source. This study provides information on the major sources affecting air quality in the receptor site, and therefore it will help us maintain and manage the ambient air quality in the Yongin-Suwon bordering area by establishing reliable control strategies for the related sources.

Identification of PM10 Chemical Characteristics and Sources and Estimation of their Contributions in a Seoul Metropolitan Subway Station (서울시 지하역사에서 PM10의 화학적 특성과 오염원의 확인 및 기여도 추정)

  • Park, Seul-Ba-Sen-Na;Lee, Tae-Jung;Ko, Hyun-Ki;Bae, Sung-Joon;Kim, Shin-Do;Park, Duckshin;Sohn, Jong-Ryeul;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.1
    • /
    • pp.74-85
    • /
    • 2013
  • Since the underground transportation system is a closed environment, indoor air quality problems may seriously affect many passengers' health. The purpose of this study was to understand $PM_{10}$ characteristics in the underground air environment and further to quantitatively estimate $PM_{10}$ source contributions in a Seoul Metropolitan subway station. The $PM_{10}$ was intensively collected on various filters with $PM_{10}$ aerosol samplers to obtain sufficient samples for its chemical analysis. Sampling was carried out in the M station on the Line-4 from April 21 to 28, July 13 to 21, and October 11 to 19 in the year of 2010 and January 11 to 17 in the year of 2011. The aerosol filter samples were then analyzed for metals, water soluble ions, and carbon components. The 29 chemical species (OC1, OC2, OC3, OC4, CC, PC, EC, Ag, Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Si, Ti, V, Zn, $Cl^-$, $NO_3{^-}$, $SO_4{^{2-}}$, $Na^+$, $NH_4{^+}$, $K^+$, $Mg^{2+}$, $Ca^{2+}$) were analyzed by using ICP-AES, IC, and TOR after proper pretreatments of each sample filter. Based on the chemical information, positive matrix factorization (PMF) model was applied to identify the $PM_{10}$ sources and then six sources such as biomass burning, outdoor, vehicle, soil and road dust, secondary aerosol, ferrous, and brakewear related source were classified. The contributions rate of their sources in tunnel are 4.0%, 5.8%, 1.6%, 17.9%, 13.8% and 56.9% in order.

Seasonal Variations of Settling Particles and Metal Fluxes at a Nearshore Site of Marian Cove, King George Island, Antarctica (남극 킹조지섬 마리안소만에서 침강 입자와 금속 플럭스의 계절 변화)

  • Shim, Jeong-Hee;Kang, Young-Chul;Han, Myung-Woo;Kim, Dong-Seon;Chung, Ho-Sung;Lee, Sang-Hoon
    • Ocean and Polar Research
    • /
    • v.24 no.2
    • /
    • pp.123-134
    • /
    • 2002
  • Seasonal variations of settling particles and metal fluxes were monitored at a nearshore site of Marian Cove, King Geroge Island, Antarctica from 28th February 1998 to 22nd January 2000. Near-bottom sediment traps were deployed at 30m water depth of the cove, and sampling bottles were recovered every month by SCUBA divers. Total particulate flux and metal concentrations were determined from the samples. Total particulate flux showed a distinct seasonality, high in austral summer and low in austral winter: the highest flux $(21.97g\;m^{-2}d^{-1})$ was found in February of 1999, and the lowest $(2.47g\;m^{-2}d^{-1})$ in September of 1998, when sea surface was frozen completely. Lithogenic particle flux accounted for 90% of the total flux, and showed a significantly negative correlation with the thickness of snow accumulation around the study site. It was suggested that the most of the lithogenic particles trapped in the bottles was transported by melt water stream from the surrounding land. Fluxes of Al, Fe, Ti, Mn, Zn, Cii, Co, Ni, Cr, Cd, and Pb showed similar seasonal variations with the total flux, and their averaged fluxes were 34000, 9000,960, 180, 13.8, 17.6, 3.0,2.1, 5.4, 0.02, and $1.5nmol\;m^{-2}d^{-1}$ respectively. Among the metals, Cu and Cd showed the most noticeable seasonal patterns. The Cd flux correlated positively with the fluxes of biogenic components while the Cu flux correlated with both the lithogenic and biogenic particle fluxes. The Cu flux peak in the late summer is likely related to a substantial amount of inflow of ice melt water laden with Cu-enriched lithogenic particles. On the other hands, the Cd flux peak in the early spring may be associated with the unusually early occurred phytoplankton bloom.

Size-resolved Source Apportionment of Ambient Particles by Positive Matrix Factorization at Gosan, Jeju Island during ACE-Asia (PMF 분석을 이용한 ACE-Asia 측정기간 중 제주 고산지역 입자상 물질의 입경별 발생원 추정)

  • Moon K.J.;Han, J.S.;Kong, B.J.;Jung, I.R.;Cliff Steven S.;Cahill Thomas A.;Perry Kelvin D.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.5
    • /
    • pp.590-603
    • /
    • 2006
  • Size-and time-resolved aerosol samples were collected using an eight-stage Davis rotating unit for monitoring (DRUM) sampler from 23 March to 29 April 2001 at Gosan, Jeju Island, Korea, which is one of the super sites of Asia-Pacific Regional Aerosol Characterization Experiment(ACE-Asia). These samples were analyzed using synchrotron X-ray fluorescence for 3-hr average concentrations of 19 elements including Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Rb, and Pb. The size-resolved data sets were then analyzed using the positive matrix factorization(PMF) technique to identify possible sources and estimate their contributions to particulate matter mass. PMF analysis uses the uncertainty of the measured data to provide an optimal weighting. Twelve sources were resolved in eight size ranges($0.09{\sim}12{\mu}m$) and included continental soil, local soil, sea salt, biomass/biofuel burning, coal combustion, oil combustion, municipal incineration, nonferrous metal source, ferrous metal source, gasoline vehicle, diesel vehicle, and volcanic emission. The PMF result of size-resolved source contributions showed that natural sources represented by local soil, sea salt, continental soil, and volcanic emission contributed about 79% to the predicted primary particulate matter(PM) mass in the coarse size range ($1.15{\sim}12{\mu}m$) while anthropogenic sources such as coal combustion and biomass/biofuel burning contributed about 58% in the fine size range($0.56{\sim}2.5{\mu}m$). The diesel vehicle source contributed mostly in ultra-fine size range($0.09{\sim}0.56{\mu}m$) and was responsible for about 56% of the primary PM mass.

Geochemistry and Genesis of the Guryonsan(Ogcheon) Uraniferous Back Slate (구룡산(九龍山)(옥천(決川)) 함(含)우라늄 흑색(黑色) 점판암(粘板岩)의 지화학(地化學) 및 성인(成因))

  • Kim, Jong Hwan
    • Economic and Environmental Geology
    • /
    • v.22 no.1
    • /
    • pp.35-63
    • /
    • 1989
  • Geochemical characteristics of the Guryongsan (Ogcheon) uraniferous black slate show that this is an analogue to the conventional Chattanooga and Alum shales in occurrences. Whereas, its highest enrichment ratio in metals including uranium, among others, is explained by the cyclic sedimentation of the black muds and quartz-rich silts, and the uniform depositional condition with some what higher pH condition compared to the conditions of the known occurrences. The cyclic sedimentation, caused by the periodic open and close of the silled basin, has brought about the flush-out) of the uranium depleted water and the recharge with the new metal-rich sea water, which consequently contributed to the high concentration of metals in mud. The metal-rich marine black muds, which mostly occur in the early to middle Palaeozoic times, is attributed by the geologic conditions which related to the atmospheric oxygen contents, and these are scarcely met in the late Precambrian and/or with the onset of Palaeozoic era in the geologic evolution of the earth.

  • PDF