• Title/Summary/Keyword: Al-Cu electrode

Search Result 83, Processing Time 0.026 seconds

Studies on electrocatalytic effects of LiAlCl4/SOCl2 cell by tetradentate Schiff base metal(II) complexes (네자리 Schiff base 금속(II) 착물들에 의한 LiAlCl4/SOCl2 전지의 전기촉매 효과에 대한 연구)

  • Sim, Woo-Jong;Jeong, Byeong-Goo;Na, Kee-su;Chjo, Ki-Hyung;Choi, Yong-Kook
    • Applied Chemistry for Engineering
    • /
    • v.7 no.3
    • /
    • pp.416-423
    • /
    • 1996
  • Electrochemical reduction of thionyl chloride in 1.5 M $LiAlCl_4/SOCl_2$ electrolyte solution containing tetradentate Schiff base Co(II), Ni(II), Cu(II), and Mn(II) complexes has been investigated at the glassy carbon electrode. The catalyst molecules of transition metal(II) complexes were adsorbed on the electrode surface and reduced thionyl chloride resulting in a generation of oxidized catalyst molecules. There was an optimum concentration for each catalyst compound. The current density of $SOCl_2$ reduction was enhanced up to 150% at the catalyst contained electrolyte solution. The reduction currents of thionyl chloride were increased and the reduction potentials were shifted to the negative potential as scan rates became faster. The reduction of thionyl chloride was proceeded to diffusion controlled reaction.

  • PDF

Effects of bottom electrodes on the orientation of piezoelectric thin films and the frequency response of resonators in FBARs (체적 탄성파 공진기의 하부 전극이 압전 박막의 배향성 및 공진기의 압전 특성에 미치는 영향)

  • Lee, Myung-Ho;Jung, Jun-Phil;Lee, Jin-Bock;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1397-1399
    • /
    • 2002
  • Effects of bottom electrode materials (Al, Cu, Ti, and Mo), included in film bulk acoustic resonators (FBARs), on the orientation of piezoelectric AlN thin films and the frequency response characteristic of resonators were investigated. The texture coefficient (TC) for (002) orientation, crystallite size, full width half maximum (FWHM), and surface roughness of deposited AlN films were measured for the various bottom electrodes. The return tosses estimated from the frequency responses of fabricated resonators were also compared. Experimental results showed that the difference of lattice constant and thermal expansion coefficient between the bottom electrode and the AlN film were the most important factors for achieving a high performance resonator.

  • PDF

Proximity Effect in Nb/Gd Layers

  • Jung, Dong-Ho;Char, K.
    • Progress in Superconductivity
    • /
    • v.12 no.2
    • /
    • pp.110-113
    • /
    • 2011
  • We have grown a Nb/Gd bilayer on a$SiO_2$/Si substrate by using a DC magnetron sputtering system, which was fabricated in situ with silicon stencil masks. In order to investigate proximity effect of the Nb/Gd bilayer, we used a planar tunnel junction with an AlOx tunnel barrier by oxidizing the Al ground electrode at the bottom. A $Co_{60}Fe_{40}$ backing of Al was deposited so as to reduce the superconductivity of the Al, ensuring a normal counterelectrode. With a 50-nm-thick Nb layer, we have measured dI/dV (dynamic conductance) by varying the thickness of Gd, which can reveal the density of states (DOS) of the Nb/Gd bilayer as a function of the Gd thickness resulting from the proximity effect of a superconductor/ferromagnet bilayer (S/F). The SF proximity effect in Nb/Gd will be discussed in comparison to our previous results of the CoFe/Nb, Ni/Nb and CuNi/Nb proximity effect; Gd is expected to show different effects since Gd has f-electrons, while CoFe, Ni, and CuNi have only d-electrons. Our studies will focus on the triplet correlation in a superconducting pair.

Magnetotransport Properties of Co-Fe/Al-O/Co-Fe Tunnel Junctions Oxidized with Microwave Excited Plasma

  • Nishikawa, Kazuhiro;Orata, Satoshi;Shoyama, Toshihiro;Cho, Wan-Sick;Yoon, Tae-Sick;Tsunoda, Masakiyo;Takahashi, Migaku
    • Journal of Magnetics
    • /
    • v.7 no.3
    • /
    • pp.63-71
    • /
    • 2002
  • Three fabrication techniques for forming thin barrier layer with uniform thickness and large barrier height in magnetic tunnel junction (MTJ) are discussed. First, the effect of immiscible element addition to Cu layer, a high conducting layer generally placed under the MTJ, is investigated in order to reduce the surface roughness of the bottom ferromagnetic layer, on which the barrier is formed. The Ag addition to the Cu layer successfully realizes the smooth surface of the ferromagnetic layer because of the suppression of the grain growth of Cu. Second, a new plasma source, characterized as low electron energy of 1 eV and high density of $10^{12}$ $cm^{-3}$, is introduced to the Al oxidation process in MTJ fabrication in order to reduce damages to the barrier layer by the ion-bombardment. The magnetotransport properties of the MTJs are investigated as a function of the annealing temperature. As a peculiar feature, the monotonous decrease of resistance area product (RA) is observed with increasing the annealing temperature. The decrease of the RA is due to the decrease of the effective barrier width. Third, the influence of the mixed inert gas species for plasma oxidization process of metallic Al layer on the tunnel magnetoresistance (TMR) was investigated. By the use of Kr-O$_2$ plasma for Al oxidation process, a 58.8 % of MR ratio was obtained at room temperature after annealing the junction at $300{^{\circ}C}$, while the achieved TMR ratio of the MTJ fabricated with usual Ar-$0_2$ plasma remained 48.4%. A faster oxidization rate of the Al layer by using Kr-O$_2$ plasma is a possible cause to prevent the over oxidization of Al layer and to realize a large magnetoresistance.

The fabrication and the analysis on a communication device for bilateral (양방향 통신 장치 제작 및 분석)

  • You, Il-hyun
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.2
    • /
    • pp.83-90
    • /
    • 2018
  • We have studied the optimal conditions for design and development on the communication device for a bilateral, and it's electrodes for transmitting electric signal are constructed on the $36^{\circ}$ rotated $LiTaO_3$ substrate by evaporating Al-Cu(W 30%) alloy. At first, we manufactured three kind of samples using this method, and selected two samples as similar with frequency, ripple and passband characteristics, and then we connect two samples by series in order to make bilateral devices. As results, we obtained that the electrode structure has better characteristics then the others, when it's width of reflector and electrode are $1{\lambda}/4$, $1{\lambda}/12$ respectively, and it's frequency is approximately 190.3MHz. Near future, I hope to help the manufacture for communication devices for the multi-channel and the duplex filter.

Electrical Properties of SCT Ceramic Thin Film with Top Electrode (상부전극에 따른 SCT 세라믹 박막의 전기적 특성)

  • Cho, C.N.;Kim, J.S.;Shin, C.G.;Choi, W.S.;Kim, C.H.;Park, Y.P.;Yoo, Y.G.;Lee, J.U.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1501-1503
    • /
    • 1999
  • The $(Sr_{0.85}Ca_{0.15})TiO_3$(SCT) thin films are deposited on Pt-coated electrode$(Pt/TiO_2/SiO_2/Si)$ using RF sputtering method. Ag, Cu, Al, Pt films for the formation of top eletrode were doposited on SCT thin films by thermal evaporator and sputtering. The effects of top electodes have be studied on SCT samples with a variety of top electrode materials.

  • PDF

Metal-Semiconductor Contact Behavior of Solution-Processed ZnSnO Thin Film Transistors (용액법으로 제작된 ZnSnO 박막트랜지스터의 전극 물질에 따른 계면 접촉특성 연구)

  • Jeong, Young-Min;Song, Keun-Kyu;Woo, Kyoo-Hee;Jun, Tae-Hwan;Jung, Yang-Ho;Moon, Joo-Ho
    • Korean Journal of Materials Research
    • /
    • v.20 no.8
    • /
    • pp.401-407
    • /
    • 2010
  • We studied the influence of different types of metal electrodes on the performance of solution-processed zinc tin oxide (ZTO) thin-film transistors. The ZTO thin-film was obtained by spin-coating the sol-gel solution made from zinc acetate and tin acetate dissolved in 2-methoxyethanol. Various metals, Al, Au, Ag and Cu, were used to make contacts with the solution-deposited ZTO layers by selective deposition through a metal shadow mask. Contact resistance between the metal electrode and the semiconductor was obtained by a transmission line method (TLM). The device based on an Al electrode exhibited superior performance as compared to those based on other metals. Kelvin probe force microscopy (KPFM) allowed us to measure the work function of the oxide semiconductor to understand the variation of the device performance as a function of the types metal electrode. The solution-processed ZTO contained nanopores that resulted from the burnout of the organic species during the annealing. This different surface structure associated with the solution-processed ZTO gave a rise to a different work function value as compared to the vacuum-deposited counterpart. More oxygen could be adsorbed on the nanoporous solution-processed ZTO with large accessible surface areas, which increased its work function. This observation explained why the solution-processed ZTO makes an ohmic contact with the Al electrode.

Fabrication of AIN-based FBAR Devices by Using a Novel Process and Characterization of Their Frequency Response Characteristics in terms of Various Electrode Metals (새로운 공정을 이용한 AIN 체적 탄성파 소자의 제작 및 다양한 금속 전극막에 따른 주파수 응답 특성 분석)

  • Kim, Bo-Hyun;Park, Chang-Kyun;Park, Jin-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.915-920
    • /
    • 2007
  • AIN-based film bulk acoustic resonator (FBAR) devices which adopt a membrane-type configuration such as Mo/AIN/bottom-metal/Si are fabricated by employing a novel process. The proposed resonator structure does not require any supporting layer above the substrate, which leads to the reduction in energy loss of the resonators. For all the FBAR devices, the frequency response characteristics are measured and the device parameters, such as return loss and input impedance, are extracted from the frequency responses, and analyzed in terms of the various metals such as Al. Cu, Mo, W used in the bottom-electrode. The mass-loading effect caused by the used bottom-electrode metals is found to be the main reason for the difference revealed in the measured characteristics of the fabricated FBAH devices. The results obtained in this study also show that the degree of match in lattice constant and thermal expansion coefficient hetween piezoelectric layers and electrode metals is crucial to determine the device performance of FEAR.

Fabrication Method of High-density and High-uniformity Solder Bump without Copper Cross-contamination in Si-LSI Laboratory (실리콘 실험실에 구리 오염을 방지 할 수 있는 고밀도/고균일의 Solder Bump 형성방법)

  • 김성진;주철원;박성수;백규하;이희태;송민규
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.4
    • /
    • pp.23-29
    • /
    • 2000
  • We demonstrate the fabrication method of high-density and high-quality solder bump solving a copper (Cu) cross-contamination in Si-LSI laboratory. The Cu cross-contamination is solved by separating solder-bump process by two steps. Former is via-formation process excluding Cu/Ti under ball metallurgy (UBM) layer sputtering in Si-LSI laboratory. Latter is electroplating process including Ti-adhesion and Cu-seed layers sputtering out of Si-LSI laboratory. Thick photoresist (PR) is achieved by a multiple coating method. After TiW/Al-electrode sputtering for electroplating and via formation in Si-LSI laboratory, Cu/Ti UBM layer is sputtered on sample. The Cu-seed layer on the PR is etched during Cu-electroplating with low-electroplating rate due to a difference in resistance of UBM layer between via bottom and PR. Therefore Cu-buffer layer can be electroplated selectively at the via bottom. After etching the Ti-adhesion layer on the PR, Sn/Pb solder layer with a composition of 60/40 is electroplated using a tin-lead electroplating bath with a metal stoichiometry of 60/40 (weight percent ratio). Scanning electron microscope image shows that the fabricated solder bump is high-uniformity and high-quality as well as symmetric mushroom shape. The solder bumps with even 40/60 $\mu\textrm{m}$ in diameter/pitch do not touch during electroplating and reflow procedures. The solder-bump process of high-uniformity and high-density with the Cu cross-contamination free in Si-LSI laboratory will be effective for electronic microwave application.

  • PDF

Simultaneous Removal of Cadmium and Copper from a Binary Solution by Cathodic Deposition Using a Spiral-Wound Woven Wire Meshes Packed Bed Rotating Cylinder Electrode

  • Al-Saady, Fouad A.A.;Abbar, Ali H.
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.58-66
    • /
    • 2021
  • Spiral-wound woven wire meshes packed bed rotating cylinder electrode was used for the simultaneous removal of cadmium (Cd) and copper (Cu) from a binary solution. The effects of weight percent of each metal on the removal and current efficiencies were studied at an operating current of 345A, while the effect of current on the removal efficiency of both metals was investigated at three levels of current (240, 345.and 400 mA). The experiments were carried out at constant rotation speed 800 rpm, pH = 3, and a total concentration of metals (500 ppm). The results showed that the removal efficiency of copper increased from 89% to 99.4% as its weight percent increased from 20% to100%. In a similar fashion, the removal efficiency of cadmium increased from 81% to 97% as its weight percent increased from 20% to100%. The results confirmed that the removal efficiency of any metals declined in the presence of the other. Increasing of current resulted in increasing the removal efficiency of both metals at different weight percents. The results confirmed that current efficiencies for removing of copper and cadmium simultaneously decline with increasing of electrolysis time and weight percent of cadmium or with decreasing the weight percent of copper. Current efficiency was higher at the initial stage of electrolysis for all weight percents of metals. The results showed that the decay of copper concentration was exponential at all weight percents of copper, confirming that the electrodeposition of copper is under mass transfer control in the presence of cadmium. While the decay of cadmium concentration was linear at lower weight percent of cadmium then changed to an exponential behavior at high weight percent of cadmium in the presence of copper.