Proximity Effect in Nb/Gd Layers

  • Jung, Dong-Ho (Dept. of Physics and Astronomy, Seoul National University) ;
  • Char, K. (Dept. of Physics and Astronomy, Seoul National University)
  • Received : 2011.03.09
  • Accepted : 2011.04.01
  • Published : 2011.04.30

Abstract

We have grown a Nb/Gd bilayer on a$SiO_2$/Si substrate by using a DC magnetron sputtering system, which was fabricated in situ with silicon stencil masks. In order to investigate proximity effect of the Nb/Gd bilayer, we used a planar tunnel junction with an AlOx tunnel barrier by oxidizing the Al ground electrode at the bottom. A $Co_{60}Fe_{40}$ backing of Al was deposited so as to reduce the superconductivity of the Al, ensuring a normal counterelectrode. With a 50-nm-thick Nb layer, we have measured dI/dV (dynamic conductance) by varying the thickness of Gd, which can reveal the density of states (DOS) of the Nb/Gd bilayer as a function of the Gd thickness resulting from the proximity effect of a superconductor/ferromagnet bilayer (S/F). The SF proximity effect in Nb/Gd will be discussed in comparison to our previous results of the CoFe/Nb, Ni/Nb and CuNi/Nb proximity effect; Gd is expected to show different effects since Gd has f-electrons, while CoFe, Ni, and CuNi have only d-electrons. Our studies will focus on the triplet correlation in a superconducting pair.

Keywords

References

  1. P. Fulde and R. A. Ferrel, "Superconductivity in a Strong Spin-Exchange Field", Phys. Rev. 135, A550 (1964). https://doi.org/10.1103/PhysRev.135.A550
  2. A. Larkin and Y. Ovchinnikov, Zh. Eksp. Teor. Fiz. 47, 1136 (1964) [Sov. Phys. JETP 20, 262 (1965)].
  3. Jinho Kim, Yong-Joo Doh, K. Char, Hyeonjin Doh, and Han-Yong Choi, "Proximity effect in Nb/Au/ CoFe trilayers", Phys. Rev. B 71, 214519 (2005). https://doi.org/10.1103/PhysRevB.71.214519
  4. Kyungmoon Kim, Jun Hyung Kwon, Jinho Kim, K. Char, Hyeonjin Doh, and Han-Yong Choi, "Proximity effect in Nb/Cu/CoFe trilayers", Phys. Rev. B 74, 174503 (2006). https://doi.org/10.1103/PhysRevB.74.174503
  5. Nayoung Lee, Han-Yong Choi, Hyeonjin Doh, K. Char, and Hyun-Woo Lee, "Superconducting critical temperature and singlet and triplet pair functions of superconductor/normal-metal/ferromagnet trilayers", Phys. Rev. B 75, 054521 (2007). https://doi.org/10.1103/PhysRevB.75.054521
  6. A. A. Abrikosov and L. P. Gor'kov, Sov. Phys. JETP 12 (1961), p. 1243.
  7. Z. Radovic, M. Ledvij, L. Dobrosavljevic-Grujic, A. I. Buzdin, and J. R. Clem, "Transition temperatures of superconductor-ferromagnet superlattices", Phys. Rev. B 44, 759 (1991). https://doi.org/10.1103/PhysRevB.44.759
  8. Y. V. Fominov, N. M. Chtchelkatchev, and A. A. Golubov, "Nonmonotonic critical temperature in superconductor/ferromagnet bilayers", Phys. Rev. B 66, 014507 (2002). https://doi.org/10.1103/PhysRevB.66.014507
  9. Jinho Kim, Jun Hyung Kwon, K. Char, Hyeonjin Doh, and Han-Yong Choi, "Quantitative analysis of the proximity effect in $Nb/Co_{60}Fe_{40}$, Nb/Ni, and $Nb/Cu_{40}Ni_{60}$ bilayers", Phys. Rev. B 72, 014518 (2005). https://doi.org/10.1103/PhysRevB.72.014518
  10. W. J. Lu, Y. K. Bang, and K. Char, "Equal-spin triplet p-wave pairing in Nb/Ni proximity effect bilayers", Phys. Rev. B. 81, 144514 (2010). https://doi.org/10.1103/PhysRevB.81.144514
  11. P. SanGiorgio, S. Reymond, M. R. Beasley, J. H. Kwon, and K. Char, "Anomalous Double Peak Structure in Superconductor/Ferromagnet Tunneling Density of States", Phys. Rev. Lett. 100, 237002 (2008). https://doi.org/10.1103/PhysRevLett.100.237002
  12. S. Reymond, P. SanGiorgio, M. R. Beasley, J. Kim, T. Kim, and K. Char, "Tunneling density of states as a function of thickness in superconductor/strong ferromagnet bilayers", Phys. Rev. B. 73, 054505 (2006). https://doi.org/10.1103/PhysRevB.73.054505