• 제목/요약/키워드: Al plate

검색결과 569건 처리시간 0.024초

Numerical investigation on scale-dependent vibrations of porous foam plates under dynamic loads

  • Fenjan, Raad M.;Ahmed, Ridha A.;Faleh, Nadhim M.;Fatima, Fatima Masood
    • Structural Monitoring and Maintenance
    • /
    • 제7권2호
    • /
    • pp.85-107
    • /
    • 2020
  • Dynamic responses of porous piezoelectric and metal foam nano-size plates have been examined via a four variables plate formulation. Diverse pore dispersions named uniform, symmetric and asymmetric have been selected. The piezoelectric nano-size plate is subjected to an external electrical voltage. Nonlocal strain gradient theory (NSGT) which includes two scale factors has been utilized to provide size-dependent model of foam nanoplate. The presented plate formulation verifies the shear deformations impacts and it gives fewer number of field components compared to first-order plate model. Hamilton's principle has been utilized for deriving the governing equations. Achieved results by differential quadrature (DQ) method have been verified with those reported in previous studies. The influences of nonlocal factor, strain gradients, electrical voltage, dynamical load frequency and pore type on forced responses of metal and piezoelectric foam nano-size plates have been researched.

Mechanical-hygro-thermal vibrations of functionally graded porous plates with nonlocal and strain gradient effects

  • Fenjan, Raad M.;Hamad, Luay Badr;Faleh, Nadhim M.
    • Advances in aircraft and spacecraft science
    • /
    • 제7권2호
    • /
    • pp.169-186
    • /
    • 2020
  • Based upon differential quadrature method (DQM) and nonlocal strain gradient theory (NSGT), mechanical-hygro-thermal vibrational analyzes of shear deformable porous functionally graded (FG) nanoplate on visco-elastic medium has been performed. The presented formulation incorporates two scale factors for examining vibrational behaviors of nano-dimension plates more accurately. The material properties for FG plate are porosity-dependent and defined employing a modified power-law form. It is supposed that the nano-size plate is exposed to hygro-thermal and variable compressive mechanical loadings. The governing equations achieved by Hamilton's principle are solved implementing DQM. Presented results indicate the prominence of moisture/temperature variation, damping factor, material gradient index, nonlocal coefficient, strain gradient coefficient and porosities on vibrational frequencies of FG nano-size plate.

Investigating dynamic stability of metal foam nanoplates under periodic in-plane loads via a three-unknown plate theory

  • Fenjan, Raad M.;Ahmed, Ridha A.;Faleh, Nadhim M.
    • Advances in aircraft and spacecraft science
    • /
    • 제6권4호
    • /
    • pp.297-314
    • /
    • 2019
  • Dynamic stability of a porous metal foam nano-dimension plate on elastic substrate exposed to bi-axial time-dependent forces has been studied via a novel 3-variable plate theory. Various pore contents based on uniform and non-uniform models have been introduced. The presented plate model contains smaller number of field variables with shear deformation verification. Hamilton's principle will be utilized to deduce the governing equations. Next, the equations have been defined in the context of Mathieu-Hill equation. Correctness of presented methodology has been verified by comparison of derived results with previous data. Impacts of static and dynamical force coefficients, non-local coefficient, foundation coefficients, pore distributions and boundary edges on stability regions of metal foam nanoscale plates will be studied.

Activation Reduction Method for a Concrete Wall in a Cyclotron Vault

  • Kumagai, Masaaki;Sodeyama, Kohsuke;Sakamoto, Yukio;Toyoda, Akihiro;Matsumura, Hiroshi;Ebara, Takayoshi;Yamashita, Taichi;Masumoto, Kazuyoshi
    • Journal of Radiation Protection and Research
    • /
    • 제42권3호
    • /
    • pp.141-145
    • /
    • 2017
  • Background: The concrete walls inside the vaults of cyclotron facilities are activated by neutrons emitted by the targets during radioisotope production. Reducing the amount of radioactive waste created in such facilities is very important in case they are decommissioned. Thus, we proposed a strategy of reducing the neutron activation of the concrete walls in cyclotrons during operation. Materials and Methods: A polyethylene plate and B-doped Al sheet (30 wt% of B and 2.5 mm in thickness) were placed in front of the wall in the cyclotron room of a radioisotope production facility for pharmaceutical use. The target was Xe gas, and a Cu block was utilized for proton dumping. The irradiation time, proton energy, and beam current were 8 hours, 30 MeV, and $125{\mu}A$, respectively. To determine a suitable thickness for the polyethylene plate set in front of the B-doped Al sheet, the neutron-reducing effects achieved by inserting such sheets at several depths within polyethylene plate stacks were evaluated. The neutron fluence was monitored using an activation detector and 20-g on de Au foil samples with and without 0.5-mm-thick Cd foil. Each Au foil sample was pasted onto the center of a polyethylene plate and B-doped Al sheet, and the absolute activity of one Au foil sample was measured as a standard using a Ge detector. The resulting relative activities were obtained by calculating the ratio of the photostimulated luminescence of each foil sample to that of the standard Au foil. Results and Discussion: When the combination of a 4-cm-thick polyethylene plate and B-doped Al sheet was employed, the thermal neutron rate was reduced by 78%. Conclusion: The combination of a 4-cm-thick polyethylene plate and B-doped Al sheet effectively reduced the neutron activation of the investigated concrete wall.

계단형 게이트 구조를 이용한 AlGN/GaN HEMT의 전류-전압특성 분석 (Analysis of Current-Voltage characteristics of AlGaN/GaN HEMTs with a Stair-Type Gate structure)

  • 김동호;정강민;김태근
    • 대한전자공학회논문지SD
    • /
    • 제47권6호
    • /
    • pp.1-6
    • /
    • 2010
  • 본 논문에서는 고출력 고이득 특성을 갖는 고전자이동도 트랜지스터 (high-electron mobility transistor, HEMT)를 구현하기 위하여 계단형 구조의 게이트 전극을 갖는 AlGaN/GaN HEMT를 제안하였고, 소자의 DC 특성의 향상 가능성을 확인하기 위하여 단일 게이트 전극을 갖는 HEMT 및 field-plate 구조의 게이트 전극을 갖는 HEMT 소자와의 특성을 비교 분석하였다. 상용 시뮬레이터를 통해 시뮬레이션 결과, 본 연구에서 제안한 계단형 구조의 게이트 전극을 갖는 AlGaN/GaN HEMT는 드레인 전압의 인가 시, 소자의 내부에서 발생하는 전계가 단일 게이트 전극을 갖는 HEMT에 비해 약 70% 정도 감소하는 특성을 갖는 것을 확인하였고, 전달이득 (transconductance, $g_m$) 특성 역시 단일 게이트 전극구조의 HEMT나 field-plate 구조를 삽입한 HEMT에 비해 약 11.4% 정도 향상된 우수한 DC 특성을 갖는 것을 확인하였다.

판재 Al 2024-T3 합금재료의 두께효과를 나타내는 형상인자 및 하중인자에 의한 피로관계식 (A Fatigue Related Equation with Shape and Loading Factors Representing Effect of Thickness in Al 2024-T3 Alloy Sheet)

  • 김승권;이억섭;장주섭
    • 한국자동차공학회논문집
    • /
    • 제20권1호
    • /
    • pp.141-146
    • /
    • 2012
  • Aluminum alloys have been used with various thicknesses suitable for light weight of structure. It is known that the thickness effect of material is an important factor affecting fatigue crack propagation under constant fatigue stress condition. In this work, we presented the behavior of fatigue crack propagation in thin plate compared to thick plate Al 2024-T3 alloy with referred thickness effect in a correlative equation determined by the shape factor and the loading factor. We chose two factors that are used in the correlative equation with considering that the experiments were carried out under a constant fatigue stress condition. The thickness ratio of thin plate compared to thick plate and the equivalent effective stress intensity factor ratio depending on thickness were chosen as shape and loading factors. A correlative equation is utilized to determine the equivalent effective stress intensity factor range of thin plate and identify the degree of increasing phenomenon of fatigue life in thin plate compared to thick plate.

고내압 전력 스위칭용 AlGaN/GaN-on-Si HEMT의 게이트 전계판 구조 최적화에 대한 이차원 시뮬레이션 연구 (Two-dimensional Simulation Study on Optimization of Gate Field Plate Structure for High Breakdown Voltage AlGaN/GaN-on-Si High Electron Mobility Transistors)

  • 이호중;조준형;차호영
    • 대한전자공학회논문지SD
    • /
    • 제48권12호
    • /
    • pp.8-14
    • /
    • 2011
  • 본 논문에서는 이차원 소자 시뮬레이션을 활용하여 주어진 게이트-드레인 간격에서 AlGaN/GaN-on-Si HEMT (high electron mobility transistor) 의 고항복전압 구현을 위한 게이트 전계판의 최적화 구조를 제안하였다. 게이트 전계판 구조를 도입하여 게이트 모서리의 전계를 감소시켜 항복전압을 크게 증가시킬 수 있음을 확인 하였으며, 이때 전계판의 길이와 절연막의 두께에 따라 게이트 모서리와 전계판 끝단에서 전계분포의 변화를 분석하였다. 최적화를 위하여 시뮬레이션을 수행한 결과, 1 ${\mu}m$ 정도의 짧은 게이트 전계판으로도 효과적으로 게이트 모서리의 전계를 감소시킬 수 있으며 전계판의 길이가 너무 길어지면 전계판과 드레인 사이의 남은 길이가 일정 수준 이하로 감소되어 오히려 항복전압이 급격하게 감소함을 보였다. 전 계판의 길이가 1 ${\mu}m$ 일 때 최대 항복전압을 얻었으며, 게이트 전계판의 길이를 1 ${\mu}m$로 고정하고 $SiN_x$ 박막의 두께를 변화시켜본 결과 게이트 모서리와 전계판 끝단에서의 전계가 균형을 이루면서 항복전압을 최대로 할 수 있는 최적의 $SiN_x$ 박막 두께는 200~300 nm 인 것으로 나타났다.

Electro-elastic analysis of piezoelectric laminated plates

  • Zhao, Minghao;Qian, Caifu;Lee, S.W.R.;Tong, Pin;Suemasu, H.;Zhang, Tong-Yi
    • Advanced Composite Materials
    • /
    • 제16권1호
    • /
    • pp.63-81
    • /
    • 2007
  • Based on the Kirchhoff hypothesis of normal-remain-normal, the present work analyses piezoelectric laminated plates, wherein poled piezoelectric laminae are transversely isotropic and function as actuators. A quadric electric field is induced inside a piezoelectric lamina under a given applied voltage and mechanical bending. The governing equations for the piezoelectric laminated plate derived from the principle of virtual work in terms of the electric enthalpy have the same forms as those for a conventional composite laminated plate. We use rectangular sandwich plates of Al/PZT/Al and PZT/Al/PZT with four simply supported edges to demonstrate the prediction of the maximum bending stress in the PZT layer. The analytic solutions are verified by three-dimensional finite element analysis.

Static stability analysis of smart nonlocal thermo-piezo-magnetic plates via a quasi-3D formulation

  • Fenjan, Raad M.;Ahmed, Ridha A.;Faleh, Nadhim M.;Hani, Fatima Masood
    • Smart Structures and Systems
    • /
    • 제26권1호
    • /
    • pp.77-87
    • /
    • 2020
  • By employing a quasi-3D plate formulation, the present research studies static stability of magneto-electro-thermo-elastic functional grading (METE-FG) nano-sized plates. Accordingly, influences of shear deformations as well as thickness stretching have been incorporated. The gradation of piezo-magnetic and elastic properties of the nano-sized plate have been described based on power-law functions. The size-dependent formulation for the nano-sized plate is provided in the context of nonlocal elasticity theory. The governing equations are established with the usage of Hamilton's rule and then analytically solved for diverse magnetic-electric intensities. Obtained findings demonstrate that buckling behavior of considered nanoplate relies on the variation of material exponent, electro-magnetic field, nonlocal coefficient and boundary conditions.

A numerical method for dynamic characteristics of nonlocal porous metal-ceramic plates under periodic dynamic loads

  • Abdulrazzaq, Mohammed Abdulraoof;Kadhim, Zeyad D.;Faleh, Nadhim M.;Moustafa, Nader M.
    • Structural Monitoring and Maintenance
    • /
    • 제7권1호
    • /
    • pp.27-42
    • /
    • 2020
  • Dynamic stability of graded nonlocal nano-dimension plates on elastic substrate due to in-plane periodic loads has been researched via a novel 3- unknown plate theory based on exact position of neutral surface. Proposed theory confirms the shear deformation effects and contains lower field components in comparison to first order and refined 4- unknown plate theories. A modified power-law function has been utilized in order to express the porosity-dependent material coefficients. The equations of nanoplate have been represented in the context of Mathieu-Hill equations and Chebyshev-Ritz-Bolotin's approach has been performed to derive the stability boundaries. Detailed impacts of static/dynamic loading parameters, nonlocal constant, foundation parameters, material index and porosities on instability boundaries of graded nanoscale plates are researched.