Electro-elastic analysis of piezoelectric laminated plates

  • Zhao, Minghao (Department of Mechanical Engineering, Hong Kong University of Science and Technology) ;
  • Qian, Caifu (Department of Mechanical Engineering, Hong Kong University of Science and Technology) ;
  • Lee, S.W.R. (Department of Mechanical Engineering, Hong Kong University of Science and Technology) ;
  • Tong, Pin (Department of Mechanical Engineering, Hong Kong University of Science and Technology) ;
  • Suemasu, H. (Department of Mechanical Engineering, Sophia University) ;
  • Zhang, Tong-Yi (Department of Mechanical Engineering, Hong Kong University of Science and Technology)
  • Published : 2007.03.01

Abstract

Based on the Kirchhoff hypothesis of normal-remain-normal, the present work analyses piezoelectric laminated plates, wherein poled piezoelectric laminae are transversely isotropic and function as actuators. A quadric electric field is induced inside a piezoelectric lamina under a given applied voltage and mechanical bending. The governing equations for the piezoelectric laminated plate derived from the principle of virtual work in terms of the electric enthalpy have the same forms as those for a conventional composite laminated plate. We use rectangular sandwich plates of Al/PZT/Al and PZT/Al/PZT with four simply supported edges to demonstrate the prediction of the maximum bending stress in the PZT layer. The analytic solutions are verified by three-dimensional finite element analysis.

Keywords

References

  1. H. S. Tzou and T. Fukuda, Precision Sensors, Actuators and System, Kluwer, Dordrecht, (1992)
  2. G. H. Haerting, Rainbow ceramics - a new type of ultra high-displacement actuator, Am. Ceram. Soc. Bull. 73, 93-96 (1994)
  3. U. Kenji, Piezoelectric Actuators and Ultrasonic Motors, Kluwer Academic Publishers, Boston (1997)
  4. Q. M. Wang and L. E. Cross Determination of Young's modulus of the reduced layer of a piezoelectric rainbow actuator, J. Appl. Phys. 83, 5358-5363 (1998) https://doi.org/10.1063/1.367364
  5. S. W. R. Lee and H. L. Li, Development and characterization of a rotary motor driven by anisotropic piezoelectric composite laminate, Smart Mater. Struct. 7, 327-336 (1998) https://doi.org/10.1088/0964-1726/7/3/006
  6. N. T. Adelman and Y. Stavsky, Flexural-extensional behavior of composite piezoelectric circular plates, J. Acoust. Soc. Amer. 67, 819-822 (1980) https://doi.org/10.1121/1.383958
  7. R. D. Mindlin, Frequency of piezoelectrically forced vibrations of electroded, doubly rotated quartz plates, Int. J. Solid Struct. 20, 141-157 (1984) https://doi.org/10.1016/0020-7683(84)90005-2
  8. V. Z. Parton and B. A. Kudryavtsev, Electromagnetoelasticity, Gordon and Breach Science Publishers, New York (1988)
  9. J. A. Mitchell and J. N. Reddy, A refined hybrid plate theory for composite laminates with piezoelectric laminate, Int. J. Solids Struct. 32, 2345-2367 (1995) https://doi.org/10.1016/0020-7683(94)00229-P
  10. X. D. Zhang and C. T. Sun, Formulation of an adaptive sandwich beam, Smart Mater. Struct. 5, 841-823 (1996) https://doi.org/10.1088/0964-1726/5/6/012
  11. P. Heyliger, Exact solution for simply supported laminated piezoelectric plates, J. Appl. Mech. 64, 299-306 (1997) https://doi.org/10.1115/1.2787307
  12. X. D. Zhang and C. T. Sun, Analysis of a sandwich plate containing a piezoelectric core, Smart Mater. Struct. 8, 31-40 (1999) https://doi.org/10.1088/0964-1726/8/1/003
  13. H. F. Tiersten, Linear Piezoelectric Plate Vibrations, Plenum, New York (1969)
  14. C.-K. Lee and F. C. Moon, Laminated piezopolymer plates for torsion and bending sensors and actuators, J. Acoust. Soc. Amer. 85, 2432-2439 (1989) https://doi.org/10.1121/1.397792
  15. C.-K. Lee, Theory of laminated plates for the design of distributed sensors/actuators Part I: Governing equation and reciprocal relations, J. Acoust. Soc. Amer. 87, 1144-1158 (1990) https://doi.org/10.1121/1.398788
  16. C.-K. Lee, W.-W. Chiang and T. C. O'Sullivan, Piezoelectric modal sensors/actuators pairs for critical active damping vibration control, J. Acoust. Soc. Amer. 90, 374-384 (1992) https://doi.org/10.1121/1.401260
  17. K. B. Lazarus and E. F. Crawley, Induced strain actuation of composite plates, GTL Report No. 197, MIT, Cambridge, MA (1989)
  18. E. K. Dimitriadis, C. R. Fuller and C. A. Rogers, Piezoelectric actuators for distributed noise and vibration excitation of thin plates, in: Proc. ASME Failure Prevention and Reliability Conf., Montreal, pp. 223-233 (1989)
  19. B. T. Wang, E. K. Dimitriadis and C. R. Fuller, Active control of panel related noise using multiple piezoelectric actuators, J. Acoust. Soc. Amer. 86, No. S1, S84 (1989)
  20. M. C. Ray, R. Bhattacharya and B. Samanta, Exact solutions for static analysis of intelligent structures, AIAA Journal 31, 1684-1691 (1993) https://doi.org/10.2514/3.11831
  21. P. Heyliger, Static behavior of laminated elastic/piezoelectric plates, AIAA Journal 32, 2481-2488 (1994) https://doi.org/10.2514/3.12321
  22. K. Y. Sze, X.-M. Yang and H. Fan, Electric assumptions for piezoelectric laminate analysis, Int. J. Solids Struct. 41, 2363-2382 (2004) https://doi.org/10.1016/j.ijsolstr.2003.11.018
  23. H. M. Shodja and M. T. Kamali, Three-dimensional analysis of piezocomposite plates with arbitrary geometry and boundary conditions, Int. J. Solids Struct. 40, 4837-858 (2003) https://doi.org/10.1016/S0020-7683(03)00225-7
  24. R. M. Jones, Mechanics of Composite Materials, Taylor and Francis, Pennsylvania (1999)
  25. J. M. Whitney, Structural Analysis of Laminated Anisotropic Plates, Technomic Publishing Company, Pennsylvania (1987)
  26. K. Michael and I. Hans, On the influence of the electric field on free transverse vibrations of smart beams, Smart Mater. Struct. 8, 401-410 (1999) https://doi.org/10.1088/0964-1726/8/3/311
  27. T.-Y. Zhang, C.-F. Qian and P. Tong, Linear electro-elastic analysis of a cavity or a crack in a piezoelectric material, Int. J. Solids Struct. 35, 2121-2149 (1998) https://doi.org/10.1016/S0020-7683(97)00168-6
  28. E. Reissner and Y. Stavsky, Bending and stretching of certain types of heterogeneous aeolotropic elastic plates, J. Appl. Mechan. 28, 402-408 (1961) https://doi.org/10.1115/1.3641719
  29. J. Q. Cheng, T.-Y. Zhang, M. H. Zhao, C. F. Qian, S. W. R. Lee and P. Tong, Effects of electric fields on the bending behavior of piezoelectric composite laminates, Smart Mater. Struct. 9, 824-831 (2000) https://doi.org/10.1088/0964-1726/9/6/312
  30. E. Reissner, The effect of transverse shear deformation on the bending of elastic plates, J. Appl. Mechan. 12, 69-77 (1945)
  31. R. D. Mindlin, Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates, J. Appl. Mechan. 18, 336-343 (1951)
  32. J. N. Reddy, A generalization of two-dimensional theories of laminated composited plates, Comm. Appl. Numer. Meth. 3, 173-180 (1987) https://doi.org/10.1002/cnm.1630030303