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Abstract—Based on the Kirchhoff hypothesis of normal-remain-normal, the present work analyses
piezoelectric laminated plates, wherein poled piezoelectric laminae are transversely isotropic and
function as actuators. A quadric electric field is induced inside a piezoelectric lamina under a given
applied voltage and mechanical bending. The governing equations for the piezoelectric laminated
plate derived from the principle of virtual work in terms of the electric enthalpy have the same forms as
those for a conventional composite laminated plate. We use rectangular sandwich plates of Al/PZT/Al
and PZT/Al/PZT with four simply supported edges to demonstrate the prediction of the maximum
bending stress in the PZT layer. The analytic solutions are verified by three-dimensional finite element
analysis.
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1. INTRODUCTION

Actuators and sensors made of piezoelectric materials are widely used in smart
structures and systems. One kind of smart structures and systems is multilayer
plates, which take advantage of the integrated properties of each layer [1–5].
Therefore, analysis of a piezoelectric laminated plate is of theoretical significance
and engineering importance, and thus attracts many researchers [6–12].

There are a number of two-dimensional bending models for piezoelectric lam-
inated plates [6–12]. Most of the models focus on the vibration properties of the
piezoelectric laminated plates because of their practical importance. Tiersten’s work
[13] gave much of the necessary theoretical foundation for the static and dynamic
behavior of a single-layer piezoelectric plate. Parton and Kudryavtsev [8] consid-
ered the general case of two-dimensional version of three-dimensional electroelastic
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problems in piezoelectric plates and their solutions consist of eight coupled-partial-
differential equations. Mindlin [7] derived two-dimensional equations of motion for
piezoelectric plates from three-dimensional equations of linear piezoelectricity by
expansion in power series in the thickness coordinates of the plate. Based on the
Kirchhoff plate theory, Lee and Moon [14], Lee [15], and Lee et al. [16] derived
simple formulas for bending and torsional control. Mitchell and Reddy [9] pro-
posed a refined hybrid plate theory of piezoelectric laminated plates. In the hybrid
theory an equivalent single-layer theory is used for the mechanical displacement
field, whereas the potential function for piezoelectric laminae is modeled using a
layerwise discretization in the thickness direction, equivalent to modeling the varia-
tion of electric potential through the thickness with one-dimensional finite elements
[9]. The hybrid model is able to analyze multilayer smart structures to accommodate
multiple voltage inputs and/or sensor outputs. Heyliger [11] derived exact solutions
for simply supported laminated piezoelectric plates, directly from three-dimensional
governing equations without any assumptions on the variations of displacements
and electric potential through the thickness. Lazarus and Crawley [17] developed
pin-force and consistent plate models for the design of induced strain actuators.
Dimitriadis et al. [18] and Wang et al. [19] proposed a two-dimensional model for
rectangular plates to represent the behavior induced by piezoelectric patches bonded
to the bottom and top surfaces of a laminate. Ray et al. [20] studied the behav-
ior of an elastic layer bonded to a piezoelectric layer on the assumption that the
through-thickness piezoelectric coefficient was zero. This constraint results in solu-
tions of significant difference from those where this constant is included [21]. Sze
et al. [22] studied two assumptions on the spatial distributions of the electric vari-
ables. One assumption is that the transverse electric field is piecewise linear along
the transverse direction, and the other is that the transverse electric displacement is
piecewise constant along the transverse direction. They conducted numerical calcu-
lations on laminated piezoelectric beams to demonstrate the appropriate application
conditions of the two assumptions [22]. Without using any simplified assumptions,
Shodja and Kamali [23] obtained an accurate three-dimensional solution in series.
For practice, however, it might be more desirable to use simple analytic solutions
with sufficient accuracy. Simple analytic solutions are usually derived from mod-
eling based on certain assumptions, and therefore they are appropriate in certain
aspects of applications.

When considering the deflection of a piezoelectric composite beam or plate under
an applied electric field, the Infinite-Plane-Capacitor (IPC) assumption is frequently
used in the literature to develop simplified models for piezoelectric layers whose
two surfaces are fully electroded [6, 10, 12]. The IPC assumption means that the
electric field strength inside a piezoelectric lamina under a given applied voltage is
constant and independent of the in-plane coordinates. Thus, it reduces problems
for piezoelectric laminated plates to the conventional plate problems and hence
substantially simplifies the solution procedure. The simplified solutions based on
the IPC assumption predict, to a large extent, the flexural-extensional vibration
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behavior [6, 10, 12, 15]. In the present work, we show that the electric field can be
approximately linear in the piezoelectric lamina when the piezoelectric composite
plate is under combined mechanical and electrical loading. This linear electric field
is then subjected to high stresses in the piezoelectric lamina, which are essential in
designs when reliability is a major concern.

2. ANALYSIS

2.1. Displacements and strains in a laminated plate

Figure 1 shows schematically a general (N+M)-layered piezoelectric laminated
plate with M piezoelectric laminae and N non-piezoelectric laminae. The piezo-
electric laminae are transversely isotropic, with all the planes of isotropy being par-
allel to the surfaces of the laminae, and their poling direction is in the thickness
direction. The two surfaces of each PZT lamina are fully electroded. The Cartesian
coordinate system is used with its z-axis along the thickness direction of the plate.
We use zk and zk−1 to denote the two surfaces of the kth layer.

In this paper, the following assumptions are made:

(1) perfect bonding at all interfaces;

(2) a zero value of the stress component σz;

(3) validity of the Kirchhoff hypothesis of normal-remain-normal;

(4) no in-plane electric components of Ex and Ey ; and

(5) no electric fields in the non-piezoelectric laminae.

According to the Kirchhoff hypothesis, the displacements of the plate can be
expressed as follows [22, 23]:

u(x, y, z) = u0(x, y) − zw,x,

v(x, y, z) = v0(x, y) − zw,y, (1)

w(x, y, z) = w(x, y),

where u0(x, y) and v0(x, y) are the in-plane displacements, w(x, y) is the out-plane
deflection of the middle-surface, thereafter, a comma “,” in the subscript denotes
differentiation with respect to the following coordinate(s). From equation (1), we
have the strain fields

εx = ε0
x + zkx, εy = ε0

y + zky,

γxy = γ 0
xy + zkxy, (2)

γxz = 0, γyz = 0,

where

ε0
x = u0

,x, ε0
y = v0

,y, γ 0
xy = u0

,y + v0
,x, (3)

kx = −w,xx, ky = −w,yy, kxy = −2w,xy.
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Figure 1. (N+M)-layered piezoelectric laminated plate of N non-piezoelectric laminae and M piezo-
electric laminae.

2.2. Lamina constitutive relationship

The linear constitutive equations for a PZT lamina are given by [8]
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where σx, ··, εx, ··, ··, Dx, ·· and Ex, ·· are the components of the stress, strain, elec-
tric displacement and the electric field, respectively, and c

p

ij , eij and εij are the elas-
tic, piezoelectric and dielectric constants, respectively. Following assumption (2)
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and from equation (4), we obtain [8]

εz = −c
p

13

c
p

33

(εx + εy) + e33

c
p

33

Ez. (6)

A substitution of equations (2) and (6) into equations (4) and (5) yields
[

σx

σy

τxy

]
=

[
Q

p

11 Q
p

12 0
Q

p

12 Q
p

11 0
0 0 Q

p
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] [
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γxy
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−
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p
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Ey
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]

≡ [
Qp

] [
εx

εy

γxy

]
− [

ep
] [

Ex

Ey

Ez

]
, (7)

[
Dx

Dy

Dz

]
= [

ep
]T

[
εx

εy

γxy

]
+

[
ε11 0 0
0 ε11 0
0 0 ε

p

33

][
Ex

Ey

Ez

]
, (8)

where the reduced elastic, piezoelectric and dielectric constants are given by

Q
p

ij = c
p

ij − c
p

i3c
p

j3

c
p

33

, i, j = 1, 2, 6,

(9)

e
p

31 = e31 − c
p

13

c
p

33

e33, ε
p

33 = ε33 + e2
33

c
p

33

.

For comparison, we briefly describe the Infinite-Plane-Capacitor (IPC) assump-
tion. The IPC hypothesis assumes that the electric field is the same as that in an
infinite plane capacitor [6, 10, 12, 15] such that the potential in the PZT lamina
could be expressed in the form of

ϕ(x, y, z) = ϕ0 + zψ, (10a)

where ϕ0 is a reference electrical potential and ψ is a constant representing the
potential gradient through thickness. Equation (10a) is equivalent to

Ex = 0, Ey = 0, −Ez = −E0
z = V

tp
, (10b)

where E0
z is the apparent electric field strength, and V and tp are the applied electric

voltage between the two electrodes and the thickness of the PZT layer, respectively.
Due to the piezoelectric effect, an external mechanical load, in addition to the
loading of electric voltage, induces an electric field which generally differs from
that given by equation (10a) or (10b). In return, the electric field induced by both
electric and mechanical loading produce a mechanical field, which is essential and
important to reliability designs. To account for this coupling effect, we introduce
assumption (4) to replace the IPC assumption and accordingly derive the electric
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field from equation (8). Using the dielectric governing equation

Dx,x + Dy,y + Dz,z = 0, (11)

together with equations (2) and (8) and assumption (4), we have

e
p

31(kx + ky) − ε
p

33ϕ,zz = 0. (12)

The general solution of equation (12) is

ϕ = e
p

31

ε
p

33

z2

2
(kx + ky) + zϕ1 + ϕ2, (13)

where ϕ1 and ϕ2 are two unknown functions of x and y. If an electric potential
voltage V is applied between the two electrodes, ϕ1 and ϕ2 can be determined and
equation (13) has the form of

ϕ = −E0
z (z − z0) + 1

2

e
p

31

ε
p

33

(kx + ky)(z − zu)(z − zl) + 1

2
(ϕu + ϕl), (14)

where zu and zl are the z-coordinates of the two surfaces of the corresponding
piezoelectric lamina, and ϕu and ϕl are the electric potentials on these two surfaces.
Similar results were obtained in piezoelectric beam [24] and thin shell analyses [8].
Consequently, differentiating equation (14) with respect to z leads to the electric
field strength

Ez = E0
z − e

p

31

ε
p

33

(kx + ky)(z − z0), (15)

where z0 = (zu + zl)/2. As indicated in equation (15), the electric field varies
linearly through the thickness of the PZT lamina. Substituting equation (15) into
constitutive equations (7) and (8) and considering assumption (4), we have the
modified reduced constitutive equations for the piezoelectric lamina:

[
σx

σy

τxy

]
= [

Qp
]



ε0
x

ε0
y

γ 0
xy


 + (

z[Qp] + (z − z0)[Qpp])
[

kx

ky

kzy

]
−

[
e

p

31
e

p

31
0

]
E0

z , (16)

Dz = ε
p

33E
0
z + e

p

31(ε
0
x + ε0

y) + e
p

31(kx + ky)z0, (17)

where

[Qpp] =
[

(e
p

31)
2/ε

p

33 (e
p

31)
2/ε

p

33 0
(e

p

31)
2/ε

p

33 (e
p

31)
2/ε

p

33 0
0 0 0

]
, (18)

[Qpp] is the modified reduced stiffness matrix. In equations (16) and (17) strains and
electric field strengths are expressed in terms of the midplane strains, the curvatures
and the apparent electric field strength. Under a given applied electric voltage, the
apparent electric field strength is a constant for a fixed PZT lamina thickness. On
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the right-hand side of equation (16), the first term gives the stress field due to the
middle-surface stretching, the third term represents the reverse piezoelectric effect,
and the second term is the bending stress. The bending stresses are related not only
to the reduced stiffness matrix, but also to the modified reduced stiffness matrix,
equation (18), which will change the bending stresses significantly. Neglecting the
modified reduced stiffness matrix [Qpp] reduces equation (16) to the constitutive
equation based on the IPC assumption.

We assume that non-piezoelectric laminas are orthotropic and hence have the
reduced constitute equations [24, 25]

[
σx

σy

τxy

]
=

[
Q

g

11 Q
g

12 Q
g

16
Q

g

12 Q
g

22 Q
g

26
Q

g

16 Q
g

26 Q
g
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] [
εx

εy

γxy

]
= [

Qg
] [

εx

εy

γxy

]
, (19)

where

[Qg] = [T ]−1[Q][T ]−T, (20)

and

[T ] =
[ cos2 θ sin2 θ 2 sin θ cos θ

sin2 θ cos2 θ −2 sin θ cos θ

− sin θ cos θ sin θ cos θ cos2 θ − sin2 θ

]
, (21)

with θ being the angle from the x-axis to the first principal material coordinates
[24, 25]. The elements of the matrix [Q] are determined from the stiffness matrix

Qij = cij − ci3c3j

c33
, i, j = 1, 2, 6. (22)

2.3. Laminate constitutive equations

The stress resultants and moment for a plate are defined as [24, 25]

[
Nx

Ny

Nxy

]
=

∫ [
σx

σy

τxy

]
dz,

[
Mx

My

Mxy

]
=

∫ [
σx

σy

τxy

]
z dz. (23)

Substituting equations (16) and (19) into (23) yields the constitute equations of
the piezoelectric laminated plate
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where the elements of the matrices are

Aij =
N∑

n=1

(
Q

g

ij

)
n
(zn − zn−1) +

M∑
m=1

(
QP

ij

)
m
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Q

g
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Q
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(z2
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Dij = 1

3

N∑
n=1

(
Q

g

ij

)
n
(z3

n − z3
n−1)

+ 1

3

M∑
m=1

[(
Q

p

ij

)
m
(z3

m − z3
m−1) + 1

4

(
Q

pp

ij

)
m
(zm − zm−1)

3

]
,

Nx0 =
M∑
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(
e31E

0
z

)
m
(zm − zm−1), Ny0 = Nx0, Nxy0 = 0,

(26)

Mx0 = 1

2
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(
e31E

0
z

)
m
(z2

m − z2
m−1), My0 = Mx0, Mxy0 = 0.

In equations (24) and (25), the Aij are extensional stiffnesses, the Bij are bending-
extension coupling stiffnesses, and the Dij are bending stiffnesses. For convenience,
equation (24) is rewritten in a compact form

[
N

M

]
=

[
A B

B D

] [
ε0

k

]
−

[
N0

M0

]
. (27)

Equations (25) and (26) show that the stiffnesses Aij and Bij in the present model
are identical to those in the IPC model, but the bending stiffness Dij are different in
the two models due to the modified reduced stiffness Q

pp

ij .

2.4. Governing equations of laminated piezoelectric plate

The governing equations for piezoelectric plate are formulated from the principle of
virtual work [8, 27]

δPH = δH − δW =
∫

	

δh d	 −
∫




(tiδui + Diniδϕ) d
 = 0, (28)

where 	 and 
 denote, respectively, the entire domain and domain boundaries,
ti are the tractions, and ni are the components of the unit outward normal to 
. It
should be kept in mind that in equation (28), the variables are strains and electric
field strengths and further displacements and electric potential, u0, v0, w, and E0

z .
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The total electric enthalpy for the entire domain is given by

H =
∫

1

2

{∫
[σij εij − DiEi] dz

}
dx dy. (29)

Substituting equations (15-17) and (19) into (29) and using (24), we obtain

H = 1

2

∫ {[ε0]T[A][ε0] + 2[ε0]T[B][k] + [k]T[D][k]
− 2[N0]T[ε0] − 2[M0]T[k] − h0

}
dx dy, (30)

where

h0 =
M∑
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[
ε

p

33(E
0
z )

2 + E0
z [ep

31(ε
0
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y) + e
p

31(kx + ky)z0]
]
m
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≈
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ε

p

33(E
0
z )

2
]
m
(zm − zm−1).

Note that the coupling term in h0 is approximately ignored for simplicity. Since the
apparent electric field strength depends only on the applied voltage and the thickness
of the PZT lamina, the variation of equation (30) yields

δH =
∫ {([ε0]T[A] + [k]T[B] − [N0]T

)[δε0]
+ ([ε0]T[B] + [k]T[D] − [M0]T

)[δk]} dx dy. (31)

The displacements and the deflection are chosen to satisfy the prescribed displace-
ment boundary values, i.e. the variations of displacement and deflection are zero at
the portion of the edge on which the displacements and deflection are prescribed.
Under lateral mechanical loading, i.e. prescribed forces at the plate edges, sxf and
syf , and given electric voltages, we have

δW =
∫

qδw dx dy +
∫

sxf

(�Nxδu + �Nxyδν − �Mxδw,x + �Vxδw) ds

+
∫

syf

(�Nxyδu + �Nyδν − �Myδw,y + �Vyδw) ds, (32)

where q is the applied load distribution. sxf is defined along the edges x = constant
and syf along the edges y = constant, and the over-bar denotes a “prescribed” value.
Substituting of equations (31) and (32) into (28) and then using Green’s theorem in
conjunction with integration by parts lead to the governing equations

A11u
0
,xx + 2A16u

0
,xy + A66u

0
,yy + A16v

0
,xx + (A12 + A66)v

0
,xy + A26v

0
,yy

− B11w,xxx − 3B16w,xxy − (B12 + 2B66)w,xyy − B26w,yyy = 0, (33)
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and

A16u
0
,xx + (A12 + A66)u

0
,xy + A26u

0
,yy + A66v

0
,xx

∂2v0

∂x2
+ 2A26v

0
,xy + A22v

0
,yy

− B16w,xxx − (B12 + 2B66)w,xxy − 3B26w,xyy − B22w,yyy = 0, (34)

− B11u
0
,xxx − 3B16u

0
,xxy − (B12 + 2B66)u

0
,xyy − B26u

0
,yyy

− B16v
0
,xxx − (B12 + 2B66)v

0
,xxy − 3B26v

0
,xyy − B22v

0
,yyy

+ D11w,xxxx + 4D16w,xxxy + 2(D12 + 2D66)w,xxyy

+ 4D26w,xyyy + D22w,yyyy = q(x, y), (35)

and the force boundary conditions

Nx = N̄x, Nxy = N̄xy
on sxf , (36)

Mx = M̄x Mx,x + 2Mxy,y = V̄x,

Nxy = N̄xy, Ny = N̄y,
on syf , (37)

My = M̄y, 2Mxy,x + My,y = V̄y

where Nx, Mx, . . . are in terms of the displacements and the deflection by equation
(24) or (27). Governing equations (33)–(35) have the same forms as those gov-
erning equations for conventional composite laminated plates [24, 25]. Therefore,
equations (33)–(35) can be solved by using the available methods including the re-
duced bending method [24, 25, 28].

3. EXAMPLES

3.1. Analysis of Al/PZT/Al laminated plate

To demonstrate the proposed model, we first consider a rectangular sandwich plate
of Al/PZT-5H/Al of a × b with a = 0.078 m, where a and b are the plate
length and width, respectively. The thickness of the top or bottom Al lamina is
t = 1.00 × 10−3 m and the thickness of PZT core is tp = 0.87 × 10−3 m [29].
The material properties are listed in Table 1. The midplane of the PZT lamina is
set to be the Oxy plane. In this case, the bending-extension coupling stiffnesses Bij

and the stiffness components D16 and D26 are all equal to zero. The edges of the
rectangular are simply supported. The boundary conditions are:

w = 0, Mx = −D11w,xx − D12w,yy = 0
for x = 0 or a, (38)

Nx = 0, Nxy = 0

w = 0, My = −D12w,xx − D22w,yy = 0
for y = b/2 or − b/2. (39)

Nxy = 0, Ny = 0
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Table 1.
Material properties of Al and PZT laminae (E and G in units of GPa, e in C/m2 and ε in 10−9 F/m)

E1 E2 E3 G12 G13 ν ε11 ε33 e33 −e31

Al 70.3 70.3 70.3 26.1 26.1 0.34 – – – –
PZT 61 61 48 23.3 19.1 0.31 6.0 6.0 21.319 14.645

In this case, the in-plane solution is trivial, i.e. u0 = v0 = 0 and the deflection
governing equation is simplified to

D11w,xxxx + 2(D12 + 2D66)w,xxyy + D22w,yyyy = q(x, y). (40)

If the applied electric voltage V = 0 and the transverse load is uniformly distributed
along x = a/2 that

q(x, y) = δ

(
x − a

2

)
q0, (41)

where δ is the Dirac Delta function and q0 = 1.0 × 10−3 N/m, equations (38)–(40)
are solved by the well-known Levy method [24, 25]. The deflection is given by

w =
∞∑

m=1,3,...

[
4∑

i=1

Fimeλi
mπ
a

y − Fm

]
sin

(
mπx

a

)
, (42)

where

λ1 = D12 + 2D66 − √
(D12 + 2D66)2 − D11D22

D11
, λ3 = −λ1,

λ2 = D12 + 2D66 + √
(D12 + 2D66)2 − D11D22

D11
, λ4 = −λ2, (43)

Fm = − 2q0

aD11(mπ/a)4
sin

(
mπ

2

)
,

and the coefficients Fim are determined by the following algebraic equations:

4∑
i=1

Fimermλi = Fm,

4∑
i=1

Fime−rmλi = Fm,

4∑
i=1

Fim

(
D12 − D22λ

2
i

)
ermλi = D12Fm,

4∑
i=1

Fim

(
D12 − D22λ

2
i

)
e−rmλi = D12Fm,

m = 1, 3, . . . (44)
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in which

rm = mπb

2a
. (45)

At the typical point of x = a/2, y = 0 and z = tp/2 in the PZT lamina, the
normalized deflection α and the normalized bending stress β at this typical point in
the PZT lamina

α = w
/q0a

3

D
p

11
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m=1,3,...

[
4∑

i=1

Fim − Fm

]
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(
mπ

2

)/
q0a

3

D
p
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, (46)
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/q0a

t2
p
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t3
p

2q0a3
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[(
Q

p
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pp
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) − λ2
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Q

p

12 + Q
pp
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)]

+ (Q
p

11 + Q
pp

11 )t3
p

D11(mπ)4
sin

(
mπ

2

)}
(mπ)2 sin

(
mπ

2

)
, (47)

where D
p

11 = E
p

11(tp)3/(12(1 − ν2)), in which E
p

11 is the elastic constants of the
PZT layer listed in Table 1. The normalized bending stress β and the normalized
deflection α are displayed in Figs 2(a) and 2(b), respectively, as functions of the
aspect ratio b/a. Figure 3 displays the bending stress in the PZT layer along the
z-direction at the center point of x = a/2, y = 0 and z = tp/2. The corresponding
results based on the IPC assumption are also shown for comparison. Figure 2(a) and
Fig. 3 show that the normalized bending stress calculated from the present model
could be twice larger than that calculated from the IPC model. It is interesting to
note that the values of the deflection obtained by the two models are almost the
same in this case. We verify the present model using finite element analysis (FEA)
with the commercial software ABAQUS. Three-dimensional 20-node solid brick
elements are employed and two elements are used through the thickness of each
layer of the lamina. The mesh was refined to check the accuracy and the final one
comprises 1200 elements. It can be seen that the FEA results agree well with those
by the present analytical method.

Because the PZT layer is sandwiched by two Al laminae, the bending stiffness
is mainly from the two Al layers. In this case, though the PZT lamina is stiffened
due to the modified reduced stiffness matrix [Qpp], as shown in equation (16), the
bending stiffness is almost the same as those of the IPC model, as listed in Table 2.
Therefore, there is little difference in deflection but large difference in the stress in
the PZT core.

For the PZT sandwich plate, the thinner are the two Al layers, the more
contribution there is from the PZT layer to the bending stiffness. Consequently,
the difference between the deflections calculated by the two models will greater.
Table 3 lists the ratio of the deflection calculated by the IPC model to that by the
present model. The larger the ratio tp/t of the PZT layer thickness to the Al layer
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(a)

(b)

Figure 2. (a) Normalized bending stress β at the plate center x = a/2, b = 0, z = tp/2 (Al/PZT/Al
plate, a = 0.078 m, tp = 0.87 × 10−3 m, t = 1.00 × 10−3 m). (b) Normalized deflection α at the
plate center (Al/PZT/Al plate, where a = 0.078 m, tp = 0.87 × 10−3 m, t = 1.00 × 10−3 m).

thickness, the larger the deflection ratio and the closer to unity is the stress ratio. For
the thickness ratio of tp/t = 1, the stress and deflection ratios are respectively 0.608
and 1.021, indicating that the stresses calculated by the two models differ greatly,
while the deflections are almost the same. For tp/t = 100, however, the stress ratio
is 0.986, while the deflection ratio is 1.654. This is because when the thickness
of Al layers is equal to zero, the laminated plate reduces to a pure piezoelectric
plate. For a homogenous, transversely isotropic plate, the stress is independent
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Figure 3. Normalized bending stress β along the z-direction at the plate center x = a/2, b = 0,
z = tp/2 (Al/PZT/Al plate, a = 0.078 m, b/a = 2.0, tp = 0.87 × 10−3 m, t = 1.00 × 10−3 m).

Table 2.
The stiffnesses and characteristic roots of the Al/PZT/Al plate (t = 1.0×10−3 m, tp = 0.87×10−3 m)
λ1 = λ, λ2 = −λ, λ3 = λ̄, λ4 = −λ̄, I = √−1

D11 D12 D22 D66 λ

Present model 158.930 53.9796 158.930 51.2896 0.996264 + 0.0863653I

IPC model 156.5260 51.5757 156.5260 51.2896 0.996206 + 0.0870259I

Table 3.
Comparison of bending stress in the PZT layer and center deflection calculated form the two models
(Al/PZT/Al plate, a = 0.078 m, b/a = 3, tp = 0.87 × 10−3 m, q0 = 1.0 × 10−3 N/m)
RS = (σx max)IPC/(σx max)Present, Rw = (w)IPC/(w)Present

tp/t 1.0 10.0 20.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0

RS 0.608 0.814 0.892 0.946 0.959 0.968 0.974 0.979 0.983 0.986
Rw 1.021 1.366 1.496 1.554 1.608 1.623 1.634 1.642 1.649 1.654

of the material properties, because the influence of Poisson’s ratio is very small for
general materials, as shown in equation (47), whereas the deflection depends greatly
on the bending stiffness.

Next, we consider the Al/PZT/Al plate subjected only to electric loading, i.e. an
electric voltage is given between the two electrodes. From the governing equations
and the boundary conditions, it is easy to show that the deflection w, the resultant
forces Nx, Ny, Nxy , and moments Mx, My and Mxy are all equal to zero. Therefore,
the stress in the PZT layer or in the Al layer is uniform. The stress in the PZT layer
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Figure 4. The normalized stress vs. the thickness ratio under electric loading for Al/PZT/Al plate.

is obtained as

[σ ] = [Qp][A]−1[N0] − e
p

31E
0
z

[ 1
1
0

]
, (48)

where [A], [Qp], and [N0] are given in equations (7), (25) and (26). Figure 4 depicts
the normalized stress

δ = −σx/
(
e

p

31E
0
z

)
. (49)

It can be seen in Fig. 4 that when the thickness of the Al layer approaches zero,
the stress in the PZT layer approaches zero. In this case, the laminated plate is
reduced to a pure piezoelectric plate, and the PZT layer can deform freely without
any constraints. When the thickness t approaches infinity, the normalized stress is
equal to 1.0. It should be pointed out that in this case the solutions based on the two
models are identical because of the identical stiffness Aij as described in the last
section. In general, solutions based on the two models are the same for problems
without bending.

3.2. Analysis of PZT/Al/PZT laminated plate

As another example, we analyze the sandwich plate of PZT/Al/PZT, with two
piezoelectric laminae. The loading conditions and sample parameters are the same
as those in the last example. The bending stiffnesses Dij and the characteristic roots
are given in Table 4. Again the Levy method is used to derive the solution. The
quantities q0a

3/D
p

11 and q0a/t2
p in equations (46) and (47) are still used to normalize

the deflection and stress, respectively. The maximum bending stress values σx at the
point, x = a/2, y = 0 and z = t/2 + tp, are drawn in Fig. 5. Displayed in Fig. 6
are the values of deflection. We can see that the relative error is about 20% between
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Table 4.
The stiffness and characteristic roots of the PZT/Al/PZT plate (t = 1.0×10−3 m, tp = 0.87×10−3 m)
λ1 = λ, λ2 = −λ, λ3 = λ̄, λ4 = −λ̄, I = √−1

D11 D12 D22 D66 λ

Present model 121.519 −27.017 121.519 40.176 0.848204 + 0.52967I

IPC model 116.712 −31.825 116.712 40.176 0.841364 + 0.540469I

Figure 5. Normalized bending stress at the plate center x = a/2, b = 0, z = t/2 + tp (PZT/Al/PZT
plate, where a = 0.078 m, tp = 0.87 × 10−3 m, t = 1.00 × 10−3 m).

Figure 6. Normalized deflection at the plate center (PZT/Al/PZT plate, where a = 0.078 m,
tp = 0.87 × 10−3 m, t = 1.00 × 10−3 m).
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Figure 7. Comparison between the bending stresses σx at the center of conventional laminated plates
(a = 0.078 m).

the stresses calculated by the present and IPC model, while the difference between
the deflections is within 7%.

As shown in Fig. 2, there is some discrepancy between the analytical results
and the FEM results, particularly as the aspect ratio is one. To check whether
this discrepancy is induced by the piezoelectric effect, we calculate the normalized
stress again using the same input data as used in plotting Fig. 2 except that
the piezoelectric constants are taken to be zero. The analytic and FEM results for
the conventional laminated plates are illustrated in Fig. 7. Figure 7 shows almost the
same discrepancy in the normalized stress between the analytic and FEM results as
that shown in Fig. 2. This means that the discrepancy is due to the approximation
of the plate theory and the simplification of equation (30) rather than the quadric
electric field introduced in the present work. Higher order plate theory, such as
Reissner’s theory [30], Mindlin’s theory [31], or Reddy’s theory [32], may improve
the accuracy.

4. CONCLUSIONS

In the present work, we demonstrate that the electric field inside a piezoelectric
lamina of a piezoelectric composite plate is dependent on the bending curvature
of the plate. Therefore, the bending stiffness of the piezoelectric lamina contains
the piezoelectric and dielectric parameters. The forms of the governing equation of
the general piezoelectric laminated plates, derived by the principle of virtual work
in terms of the in-plane displacements and the deflection, are identical to those
of conventional laminated plates. As a result, the available solution method for
conventional laminated plates can be used for the piezoelectric laminated plates,
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including the approximated method. The results of rectangular sandwich plates,
Al/PZT/Al and PZT/Al/PZT, with different aspect ratios b/a and different thickness
ratio tp/t , show that the variation of electric potential in the thickness direction must
be taken into account in the structural analysis of piezoelectric laminated plates. The
IPC assumption may be appropriate for cases with no bending deformation, because
the piezoelectric affects primarily the bending stiffness of the PZT laminae.
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