• 제목/요약/키워드: Al matrix Composite

검색결과 341건 처리시간 0.031초

열반복 시험 및 유한요소해석을 통한 Mg/Mg-Al18B4O33 경사기능 재료의 열피로특성에 관한 연구 (A study on the Thermal Fatigue Properties of Mg/Mg-Al18B4O33 Functionally Graded Material by Thermal Cycling Test and Finite Element Method)

  • 이욱진;양준성;최계원;박용하;박봉규;박익민;박용호
    • 대한금속재료학회지
    • /
    • 제46권8호
    • /
    • pp.538-544
    • /
    • 2008
  • MMCs were manufactured in two different forms. One was two-layered non FGM composite and the other was four-layered FGM composite. The matrix used in this study was AZ31 magnesium alloy and the reinforcement was $Al_{18}B_4O_{33}$. The composite materials contained reinforcement fibers with a volume fraction of 0, 15, 25 and 40%. Squeeze infiltration method was used for the fabrication of each block. The thermal properties of the FGM alloy and composite joints were studied by conducting thermal cycling tests. The numerical calculation (the finite elements method-FEM) results exhibited a good agreement with the experimental results. Thermal stresses induced by thermal cycling test were clearly reduced in the functionally graded materials.

Analysis on the influence of sports equipment of fiber reinforced composite material on social sports development

  • Jian Li;Ningjiang Bin;Fuqiang Guo;Xiang Gao;Renguo Chen;Hongbin Yao;Chengkun Zhou
    • Advances in nano research
    • /
    • 제15권1호
    • /
    • pp.49-57
    • /
    • 2023
  • As composite materials are used in many applications, the modern world looks forward to significant progress. An overview of the application of composite fiber materials in sports equipment is provided in this article, focusing primarily on the advantages of these materials when applied to sports equipment, as well as an Analysis of the influence of sports equipment of fiber-reinforced composite material on social sports development. The present study investigated surface morphology and physical and mechanical properties of S-glass fiber epoxy composites containing Al2O3 nanofillers (for example, 1 wt%, 2 wt%, 3 wt%, 4 wt%). A mechanical stirrer and ultrasonication combined the Al2O3 nanofiller with the matrix in varying amounts. A compression molding method was used to produce sheet composites. A first physical observation is well done, which confirms that nanoparticles are deposited on the fiber, and adhesive bonds are formed. Al2O3 nanofiller crystalline structure was investigated by X-ray diffraction, and its surface morphology was examined by scanning electron microscope (SEM). In the experimental test, nanofiller content was added at a rate of 1, 2, and 3% by weight, which caused a gradual decrease in void fraction by 2.851, 2.533, and 1.724%, respectively, an increase from 2.7%. The atomic bonding mechanism shows molecular bonding between nanoparticles and fibers. At temperatures between 60 ℃ and 380 ℃, Thermogravimetric Analysis (TGA) analysis shows that NPs deposition improves the thermal properties of the fibers and causes negligible weight reduction (percentage). Thermal stability of the composites was therefore presented up to 380 ℃. The Fourier Transform Infrared Spectrometer (FTIR) spectrum confirms that nanoparticles have been deposited successfully on the fiber.

연마방법에 따른 복합레진의 활택도에 관한 연군 -Atomic Force Microscope를 이용한 연구 (A STUDY ON SURFACE ROUGHNESS OF COMPOSITE RESINS AFTER FINISHING AND POLISHING -an Atomic Force Microscope study)

  • 김형섭;우이형
    • 대한치과보철학회지
    • /
    • 제35권4호
    • /
    • pp.719-741
    • /
    • 1997
  • This study was undertaken to compare by Atomic Force Microscope the effects of various finishing and polishing instruments on surface roughness of filling and veneering composite resins. Seven composite resins were studied : Silux Plus (3M Dental Products, U.S.A.), Charisma (Heraeus Kulzer, Germany), Prisma THP (L.D.Caulk, Dentsply, U.S.A.), Photoclearfil (Kuraray, Japan), Cesead (Kuraray, Japan), Thermoresin LC (GC, Japan), Artglass (Heraeus Kulzer, Germany). Samples were placed and polymerized in holes (2mm thick and 8.5mm in diameter) machined in Teflon mold under glass plate, ensuring excess of material and moulded to shape with polyester matrix strip. Except control group (Polyester matrix strip), all experimental groups were finished and polishied under manufacturer's instructions. The finishing and polishing procedure were : carbide bur (E.T carbide set 4159, Komet, Germany), diamond bur (composite resin polishing bur set, GC, Japan), aluminum-oxide disc (Sof-Lex Pop-On, 3M Dental Products, U.S.A.), diamond-particle disc (Dia-Finish, Renfert Germany), white stone bur & rubber point( composite finishing kit, EDENTA, Swiss), respectively. Each specimens were evaluated for the surface roughness with Atomic Force Microscope (AutoProbe CP, Park Scientific Instruments, U.S.A.) under contact mode and constant height mode. The results as follows : 1. Except Thermoresin LC, all experimental composite resin groups showed more rougher than control group after finishing and polishing(p<0.1). 2. A surface as smooth as control group was obtained by $Al_{2}O_{3}$ disc all filling composite resin groups except Charisma and all veneering composite resin groups except Thermoresin LC(p<0.05). 3. In case of Thermoresin LC, there were no statistically significant differences before and after finishing and polishing(p>0.1). 4. Carbide bur, diamond bur showed rough surfaces in all composite resin groups, so these were inappropriate for the final polishing instruments.

  • PDF

고압 자전연소 소결법을 이용한 섬유강화 복합체의 제조 (Fabrication of Fiber-Reinforced Composites by High Pressure Self-Combustion Sintering Method)

  • 방환철;고철호;임동원;김봉섭;최태현;윤존도
    • 한국세라믹학회지
    • /
    • 제37권5호
    • /
    • pp.444-452
    • /
    • 2000
  • Dense composites of titanium matrix and Al2O3 matrix with reinforcements of carbon or titanium carbide fibers were successfully fabricated by high-pressure self-combustion sintering method or combustion reacton under 30 MPa of uniaxial pressure with an aid of external heating in vaccum. It was found that the fibers were uniformly distributed in the matrix, and aligned in a phase perpendicular to the pressure axis. As a moel ratio of Ti/C or reaction time increased, the density of Ti-matrix composite increased Micro pores around fibers could be removed by using clean carbon fibers without sizing agent on their surface. The evolution of carbide fibers from carbon fibers was observed. The composition of the various phases around fibers were analyzed.

  • PDF

Al-4at.%Zr합금의 기계적합금화 공정과 열처리과정에서 발생하는 상변화거동 (Phase Transformation in Al-4at.%Zr Alloy during Mechanical Alloying and Heat-treatment Processes)

  • 박재필;김일호;권숙인
    • 한국분말재료학회지
    • /
    • 제12권1호
    • /
    • pp.36-42
    • /
    • 2005
  • Four different mechanical alloying(MA) processes were employed to fabricate very fine intermetallic compound $Al_3Zr$ particles dispersed Al composite materials(MMC) with Al-4at.%Zr composition. Phase transformations including phase stability during MA and heat treatment processes were investigated. Part of Zr atoms were dissolved into Al matrix and part of them reacted with hydrogen produced by decomposition of PCA(methanol) to form hydride $ZrH_2$ during first MA process. These $ZrH_2$ hydrides disappeared when alloy powders were heat treated at $500^{\circC}$. Stable $Al_3Zr$ dispersoids with $DO_23$ structure were formed by heat treating the mechanically alloyed powders at $400^{\circC}$. On the other hand, metastable $Al_3Zr$dispersoids with $L1_2$ structure were formed during first MA of powers with Al-25at.%Zr composition. These metastable $Al_3Zr$ dispersoids transformed to stable $Al_3Zr$ with $DO_23$ structure when heat treated above $450^{\circC}$.

CuO-Al2O3/camphene 슬러리의 동결건조 공정에 의한 Al2O3 입자분산 Cu 다공체 제조 (Fabrication of Al2O3 Dispersed Porous Cu by Freeze Drying of CuO-Al2O3/Camphene Slurry)

  • 강현지;류도형;오승탁
    • 한국분말재료학회지
    • /
    • 제25권1호
    • /
    • pp.25-29
    • /
    • 2018
  • Porous Cu with a dispersion of nanoscale $Al_2O_3$ particles is fabricated by freeze-drying $CuO-Al_2O_3$/camphene slurry and sintering. Camphene slurries with $CuO-Al_2O_3$ contents of 5 and 10 vol% are unidirectionally frozen at $-30^{\circ}C$, and pores are generated in the frozen specimens by camphene sublimation during air drying. The green bodies are sintered for 1 h at $700^{\circ}C$ and $800^{\circ}C$ in $H_2$ atmosphere. The sintered samples show large pores of $100{\mu}m$ in average size aligned parallel to the camphene growth direction. The internal walls of the large pores feature relatively small pores of ${\sim}10{\mu}m$ in size. The size of the large pores decreases with increasing $CuO-Al_2O_3$ content by the changing degree of powder rearrangement in the slurry. The size of the small pores decreases with increasing sintering temperature. Microstructural analysis reveals that 100-nm $Al_2O_3$ particles are homogeneously dispersed in the Cu matrix. These results suggest that a porous composite body with aligned large pores could be fabricated by a freeze-drying and $H_2$ reducing process.

Study on Metal/Diamond Binary Composite Coatings by Cold Spray

  • Kim, H.J.;Jung, D.H.;Jang, J.H.;Lee, C.H.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.240-241
    • /
    • 2006
  • Metal/diamond binary composite coatings on Al substrate without grit blasting were deposited by cold spray process with insitu powder preheating. Microstructural characterization of the as-sprayed coatings with different diamond size, strength and with/without Ti coating on diamond was carried out by OM and SEM. The assessment of basic properties such as tensile bond strength and hardness of the coatings, and the deposition efficiency was also carried out. Particular attention on the composite coatings was on the diamond fracture phenomenon during the cold spray deposition and the interface bonding between the diamond and the Fe-based metal matrix.

  • PDF

B4C tile 삽입 B4Cp/Al7075 하이브리드 복합재의 계면 제어를 통한 내충격 특성의 향상 (Improvement of Impact Resistance of B4C Tile Inserted B4Cp/Al7075 Hybrid Composites Through Interface Control)

  • 박종복;이태규;이동현;조승찬;이상관;홍순형;류호진
    • Composites Research
    • /
    • 제33권5호
    • /
    • pp.235-240
    • /
    • 2020
  • 본 연구에서는 B4C tile 삽입 B4Cp/Al7075 하이브리드 복합재의 내충격성을 향상시키기 위하여 B4C/Al7075 계면의 제어법을 개발하고 제어된 계면의 특성에 관하여 분석하였다. 이를 위해 B4C 타일 표면에 B2O3, Ni, 그리고 Si을 각각 열산화, 무전해도금, 그리고 플라즈마 용사법을 이용하여 코팅하였다. 이후 코팅된 B4C 타일을 액상 가압법을 이용하여 B4C/Al7075 복합재 내부에 삽입하여 B4C tile 삽입 B4Cp/Al7075 하이브리드 복합재를 제작하였다. 코팅의 효과를 체계적으로 분석하기 위해 계면에너지, 접합 강도, 그리고 내충격성을 측정하였다. 모든 코팅이 계면에너지, 계면강도, 내충격성을 증가시켰으며 특히 B2O3 코팅 시 내충격성이 86.8% 증가하였다. 본 연구는 차세대 경량 장갑, 방탄소재로 주목받고 있는 B4C/Al 계열 복합재의 성능을 향상시키는 핵심적인 표면처리법을 개발, 분석한 것에 의의가 있다.

하이브리드 금속복합재료의 마모특성 (Wear Properties of Hybrid Metal Matrix Composites)

  • 부후이후이;송정일
    • Composites Research
    • /
    • 제16권3호
    • /
    • pp.75-84
    • /
    • 2003
  • 본 연구의 목적은 가압주조법에 의해 제조된 Saffil/Al, Saffil/$\textrm{Al}_2\textrm{O}_3$/Al, Saffil/SiC/Al 과 같은 혼합금속 복합재료의 마모 물성을 조사하고자 하는 것이다. 마모 시험은 건조와 윤활상태 하에서 pin-on-disk 형태의 마모 시험기로 수행되었다. 세가지 금속복합재료의 마모 물성시험에서 Saffil섬유, $\textrm{Al}_2\textrm{O}_3$입자, SiC입자의 효과들을 조사하였다. 마모 메커니즘은 복합재료의 마모된 표면들을 관찰하여 분석하였다. 마모과정 동안 마찰계수(COF)의 변화는 컴퓨터에서 자동적으로 기록되었으며, 건조 조건에서 Saffi1/SiC/Al은 고온과 높은 하중 하에서 가장 좋은 마모 저항을 보여주었다. 한편 Saffil/ Al과 Saffi1/$\textrm{Al}_2\textrm{O}_3$/Al의 마모 저항은 비슷한 결과를 보였다. 건조조건에서 적당한 하중과 상온에서 지배적인 마모 메커니즘은 연삭 마모이며, 하중이나 온도가 증가함에 따라 응착마모로 변화되며, 고온에서는 융착마모를 나타내었다. 건조 상태에서 세가지 복합재료를 비교시 액체 파라핀에 의한 윤활시험시 마모 특성이 가장 좋은 결과를 나타내었다. 윤활조건에서는 Saffil/Al복합재료가 가장 좋은 마모 저항성을 보였으며, 이 경우 마찰계수도 가장 작게 나타났다. 윤활 조건에서 금속복합재료의 주요 마모 메커니즘은 microploughing 이었으나, microcracking 역시 다른 정도에서는 미소 균열도 발생한다.

고엔트로피합금 분말야금재와 알루미늄 주조재 사이의 계면 반응 연구 (Interfacial Reaction between Spark Plasma Sintered High-entropy Alloys and Cast Aluminum)

  • 김민상;손한솔;정차희;한주연;김정준;김영도;최현주;김세훈
    • 한국분말재료학회지
    • /
    • 제29권3호
    • /
    • pp.213-218
    • /
    • 2022
  • This study investigates the interfacial reaction between powder-metallurgy high-entropy alloys (HEAs) and cast aluminum. HEA pellets are produced by the spark plasma sintering of Al0.5CoCrCu0.5FeNi HEA powder. These sintered pellets are then placed in molten Al, and the phases formed at the interface between the HEA pellets and cast Al are analyzed. First, Kirkendall voids are observed due to the difference in the diffusion rates between the liquid Al and solid HEA phases. In addition, although Co, Fe, and Ni atoms, which have low mixing enthalpies with Al, diffuse toward Al, Cu atoms, which have a high mixing enthalpy with Al, tend to form Al-Cu intermetallic compounds. These results provide guidelines for designing Al matrix composites containing high-entropy phases.