DOI QR코드

DOI QR Code

Phase Transformation in Al-4at.%Zr Alloy during Mechanical Alloying and Heat-treatment Processes

Al-4at.%Zr합금의 기계적합금화 공정과 열처리과정에서 발생하는 상변화거동

  • Park, Jae-Pil (Department of Advanced Materials Engineering, Korea University) ;
  • Kim, Il-Ho (Department of Advanced Materials Engineering, Korea University) ;
  • Kwun, S.I. (Department of Advanced Materials Engineering, Korea University)
  • 박재필 (고려대학교 신소재공학과) ;
  • 김일호 (고려대학교 신소재공학과) ;
  • 권숙인 (고려대학교 신소재공학과)
  • Published : 2005.02.01

Abstract

Four different mechanical alloying(MA) processes were employed to fabricate very fine intermetallic compound $Al_3Zr$ particles dispersed Al composite materials(MMC) with Al-4at.%Zr composition. Phase transformations including phase stability during MA and heat treatment processes were investigated. Part of Zr atoms were dissolved into Al matrix and part of them reacted with hydrogen produced by decomposition of PCA(methanol) to form hydride $ZrH_2$ during first MA process. These $ZrH_2$ hydrides disappeared when alloy powders were heat treated at $500^{\circC}$. Stable $Al_3Zr$ dispersoids with $DO_23$ structure were formed by heat treating the mechanically alloyed powders at $400^{\circC}$. On the other hand, metastable $Al_3Zr$dispersoids with $L1_2$ structure were formed during first MA of powers with Al-25at.%Zr composition. These metastable $Al_3Zr$ dispersoids transformed to stable $Al_3Zr$ with $DO_23$ structure when heat treated above $450^{\circC}$.

Keywords

References

  1. J. Q. Guo and K. Ohtera: Mater. Lett., 27 (1996) 343 https://doi.org/10.1016/0167-577X(96)00002-X
  2. G. J. Hildeman and M. J. Koczak: High Strength Powder Metallurgy Aluminium AlloyII, TMS, Warrendale (1986)
  3. S. H. Han and D. H. Kim: J. Korean Inst. Met. Mater., 23 (1985) 611 (Korean)
  4. E. Nes: Acta Met., 20 (1972) 499 https://doi.org/10.1016/0001-6160(72)90005-3
  5. K. M. Lee and I. H. Moon: Mater. Sci. Eng., A185 (1994) 165. https://doi.org/10.1016/0921-5093(94)90940-7
  6. Y. C. Cheng, S. H. Wang, P. W. Kao and C. P. Chang: Mater. Sci. Forum, 217 (1996)1891 https://doi.org/10.4028/www.scientific.net/MSF.217-222.1891
  7. L. Guoxian, L. Zhichao and W. Erde: J. Mater. Sci., 31 (1996) 901 https://doi.org/10.1007/BF00352888
  8. P. B. Desch, R. B. Schwarz and P. Nash: Scripta Mater., 34 (1996) 37 https://doi.org/10.1016/1359-6462(95)00468-8
  9. C. Suryanarayana, W. Li, F. H. Froes: Scipta Metall., 31 (1994) 14658
  10. X. P. Niu, L. Froyen and L. Delaey: J. Mater. Sci., 29 (1994) 3724 https://doi.org/10.1007/BF00357340
  11. J. K. Yang, J. W. Byun and S. I. Kwon: J. Korean Inst. Met. Mater., 37 (1999) 760 (Korean)
  12. W. B. Pearson: A Handbook of Lattice Spacing and Structures of Metals and Alloys, Pergamon Press (1939) 1
  13. C. Suryanarayana : Prog. Mater., 46 (2001) 1
  14. Wonsik Lee and S.I. Kwun: J. Alloy. Comp., 240 (1996)
  15. K. I. Moon, K. Y. Chang and K. S. Lee: J. Alloy. Comp., 312 (2000) 273 https://doi.org/10.1016/S0925-8388(00)01101-4
  16. T. B. Massalski: Binary Alloy Phase Diagrams, ASM International, Metals Park, Ohio, USA, (1990)
  17. A. R. Kennedy: Scripta Mater., 47 (2002) 763 https://doi.org/10.1016/S1359-6462(02)00281-6
  18. X. P. Niu, L. Froyen, L. Dealey and C. Peytour : Scripta Metall., 30 (1994) 13 https://doi.org/10.1016/0956-716X(94)90350-6