Browse > Article
http://dx.doi.org/10.4150/KPMI.2018.25.1.25

Fabrication of Al2O3 Dispersed Porous Cu by Freeze Drying of CuO-Al2O3/Camphene Slurry  

Kang, Hyunji (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Riu, Doh-Hyung (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Oh, Sung-Tag (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Journal of Powder Materials / v.25, no.1, 2018 , pp. 25-29 More about this Journal
Abstract
Porous Cu with a dispersion of nanoscale $Al_2O_3$ particles is fabricated by freeze-drying $CuO-Al_2O_3$/camphene slurry and sintering. Camphene slurries with $CuO-Al_2O_3$ contents of 5 and 10 vol% are unidirectionally frozen at $-30^{\circ}C$, and pores are generated in the frozen specimens by camphene sublimation during air drying. The green bodies are sintered for 1 h at $700^{\circ}C$ and $800^{\circ}C$ in $H_2$ atmosphere. The sintered samples show large pores of $100{\mu}m$ in average size aligned parallel to the camphene growth direction. The internal walls of the large pores feature relatively small pores of ${\sim}10{\mu}m$ in size. The size of the large pores decreases with increasing $CuO-Al_2O_3$ content by the changing degree of powder rearrangement in the slurry. The size of the small pores decreases with increasing sintering temperature. Microstructural analysis reveals that 100-nm $Al_2O_3$ particles are homogeneously dispersed in the Cu matrix. These results suggest that a porous composite body with aligned large pores could be fabricated by a freeze-drying and $H_2$ reducing process.
Keywords
Porous Cu composite; Dispersion of $Al_2O_3$; Freeze drying; Pore structure;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. Banhart: Prog. Mater. Sci., 46 (2001) 559.   DOI
2 L. P. Lefebvre, J. Banhart and D. C. Dunand: Adv. Eng. Mater., 10 (2008) 775.   DOI
3 H. Nakajima: Prog. Mater. Sci., 52 (2007) 1091.   DOI
4 T. Fukasawa, M. Ando, T. Ohji and S. Kanzaki: J. Am. Ceram. Soc., 84 (2001) 230.   DOI
5 T. Fukasawa, Z.-Y. Deng, M. Ando, T. Ohji and Y. Goto: J. Mater. Sci., 36 (2001) 2523.   DOI
6 S. Deville: Adv. Eng. Mater., 10 (2008) 155.   DOI
7 B. H. Yoon, E. J. Lee, H. E. Kim and Y. H. Koh: J. Am. Ceram. Soc., 90 (2007) 1753.   DOI
8 A. I. C. Ramos and D. C. Dunand: Metals, 2 (2012) 265.   DOI
9 J. H. Kim, S. T. Oh and C. Y. Hyun: J. Korean Powder Metall. Inst., 23 (2016) 49.   DOI
10 D. C. C. Lam, F. F. Lange and A. G. Evans: J. Am. Ceram. Soc., 77 (1994) 2113.
11 S. T. Oh, K. I. Tajima, M. Ando and T. Ohji: J. Am. Ceram. Soc., 83 (2000) 1314.
12 M. Wiśniewska: Powder Technol., 198 (2010) 258.   DOI
13 G. Fierro, M. Lojacono, M. Inversi, P. Porta, R. Lavecchia and F. Cioci: J. Catal., 148 (1994) 709.
14 S. Deville, E. Maire, G. Bernard-Granger, A. Lasalle, A. Bogner, C. Gauthier, J. Leloup and C. Guizard: Nature Mater., 8 (2009) 966.   DOI
15 K. Araki and J. W. Halloran: J. Am. Ceram. Soc., 87 (2004) 2014.
16 O. Mengual, G. Meunier, I. Cayre, K. Puech and P. Sanbre: Talanta, 50 (1999) 445.   DOI