• Title/Summary/Keyword: Al and Zn alloys

Search Result 151, Processing Time 0.026 seconds

Effects of Alloying Elements on the Properties of High Strength and High Thermal Conductivity Al-Zn-Mg-Fe Alloy for Die Casting (다이캐스팅용 Al-Zn-Mg-Fe 합금의 특성에 미치는 Zn 및 Mg 첨가의 영향)

  • Kim, Ki-Tae;Lim, Young-Suk;Shin, Je-Sik;Ko, Se-Hyun;Kim, Jeong-Min
    • Journal of Korea Foundry Society
    • /
    • v.33 no.4
    • /
    • pp.171-180
    • /
    • 2013
  • The effects of alloying elements on the solidification characteristics, microstructure, thermal conductivity, and tensile strength of Al-Zn-Mg-Fe alloys were investigated for the development of high strength and high thermal conductivity aluminium alloy for die casting. The amounts of Zn and Mg in Al-Zn-Mg-Fe alloys had little effect on the liquidus/solidus temperature, the latent heat for solidification, the energy release for solidification and the fluidity of Al-Zn-Mg-Fe alloys. Thermo-physical modelling of Al-Zn-Mg-Fe alloys by the JMatPro program showed $MgZn_2$, AlCuMgZn and $Al_3Fe$ phases in the microstructure of the alloys. Increased amounts of Mg in Al-Zn-Mg-Fe alloys resulted in phase transformation, such as $MgZn_2{\Rightarrow}MgZn_2+AlCuMgZn{\Rightarrow}AlCuMgZn$ in the microstructure of the alloys. Increased amounts of Zn and Mg in Al-Zn-Mg-Fe alloys resulted in a gradual reduction of the thermal conductivity of the alloys. Increased amounts of Zn and Mg in Al-Zn-Mg-Fe alloys had little effect on the tensile strength of the alloys.

Effects of Zn and Mg Amounts on the Properties of High Thermal Conductivity Al-Zn-Mg-Fe Alloys for Die Casting (다이캐스팅용 고열전도도 Al-Zn-Mg-Fe 합금의 특성에 미치는 Zn 및 Mg 첨가량의 영향)

  • Kim, Ki-Tae;Lim, Young-Suk;Shin, Je-Sik;Ko, Se-Hyun;Kim, Jeong-Min
    • Journal of Korea Foundry Society
    • /
    • v.33 no.3
    • /
    • pp.113-121
    • /
    • 2013
  • The effects of Zn and Mg amounts on the solidification characteristics, microstructure, thermal conductivity and tensile strength of Al-Zn-Mg-Fe alloys were investigated for the development of high thermal conductivity aluminium alloys for die casting. Zn and Mg amounts in Al-Zn-Mg-Fe alloys had a little effect on the liquidus / solidus temperature, the latent heat for solidification and the fluidity of Al-Zn-Mg-Fe alloys. Thermo-physical modelling of Al-Zn-Mg-Fe alloys by JMatPro program showed $MgZn_2$, AlCuMgZn and Al3Fe phases on microstructure of their alloys. Increase of Zn and Mg amounts in Al-Zn-Mg-Fe alloys resulted in gradual reduction of the thermal conductivity of their alloys. Increase of Mg amounts in Al-2%Zn-Mg-Fe alloys had little effect on the tensile strength of their alloys, but increase of Mg amounts in Al-4%Zn-Mg-Fe alloys resulted in steep increase of the tensile strength of their alloys.

Effects of Zn Amounts on the Castability and Tensile Properties of Al-Zn-Mg-Cu Alloys for Die Casting (Al-Zn-Mg-Cu 다이캐스팅용 합금의 주조성 및 인장특성에 미치는 Zn 첨가량의 영향)

  • Kim, Ki-Tae;Yang, Jae-Hak;Lim, Young-Suk
    • Journal of Korea Foundry Society
    • /
    • v.30 no.4
    • /
    • pp.137-141
    • /
    • 2010
  • The effects of Zn amounts on the castability and tensile properties of Al-Zn-Mg-Cu alloys were investigated for development of high strength die casting aluminium alloys. Al-Zn-Mg-Cu alloys with 3.5% Zn showed high cast cracking tendency and poor mold filling behaviour. Al-Zn-Mg-Cu alloys with 5wt% Zn and 7wt% Zn had the tensile strengths of 300~400MPa and the elongations of 2~18%. The effect of Zn on the tensile strength of Al-Zn-Mg-Cu alloys was insignificant, but Al-Zn-Mg-Cu alloy with high Zn amount had lower elongation.

A Study of the Development of a High-Strength Al-Zn Based Alloy for Die Casting I (고강도 Al-Zn기 다이캐스팅 합금개발에 관한 연구 I)

  • Shin, Sang-Soo;Yeom, Gil-Yong;Kim, Eok-Soo;Lim, Kyung-Mook
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.10
    • /
    • pp.936-941
    • /
    • 2010
  • Al-Zn based alloys are the most common types of wrought Al alloys. Although Al-Zn alloys have high strength, they cannot be applied to a conventional casting process. In this study, Al-Zn-based alloys applicable to a die casting process were developed successfully. The developed Al-45 wt% Zn-based alloys showed a fine equiaxed grain structure and high strength. A fine equiaxed grain having an average size of $25{\mu}m$ was obtained by the die casting process. The UTS and elongation of the new alloy are 475 MPa and ~3.5%, respectively. In addition, we elucidate the effect of a Zn addition on variations in different mechanical properties and the microstructure characteristics of (Al96.3-xZnxCu3Si0.4Fe0.3) x=20, 30, 40, and 45 wt% alloys fabricated by a die casting process.

The Influence of Alloying Elements on the Fluidity of Al-Zn-Mg Alloys (Al-Zn-Mg계 알루미늄 합금의 유동성에 미치는 합금원소의 영향)

  • Cho, Jea-Sup;Kim, Jee-Hun;Sim, Woo-Jeong;Im, Hang-Joon
    • Journal of Korea Foundry Society
    • /
    • v.32 no.3
    • /
    • pp.127-132
    • /
    • 2012
  • Al-Zn-Mg alloys, being high strength aluminum alloys, have attracted attention as a material of automobile parts that require higher mechanical properties and lightness. Automobile parts with complex shapes are manufactured by low-priced casting method, but Al-Zn-Mg alloys are difficult to cast because of its poor hot cracking, feeding, and fluidity. Thus fluidity experiments on Al-Zn-Mg alloys were conducted for the castability evaluation. The effects of Mg and Zn, representative elements of Al-Zn-Mg alloys, on fluidity were observed. Spiral mold was used for fluidity experiments and the lengths of solidified specimens were measured after melting and gravity casting. Correlation between microstructures and fluidity length based on the alloy composition was considered. According to the experimental results, as the amount of Mg and Zn increased, fluidity decreased. Also, it was confirmed that fluidity change by the variation of Mg composition was greater than that of Zn.

Effect of Aging Treatment on the Microstructure and Mechanical Properties of Mg-6Al-xZn (x : 1.5, 2.5) Alloys Fabricated by Squeeze Casting (용탕단조된 Mg-6Al-xZn (x=1.5, 2.5) 합금(合金)의 미세조직 및 기계적 성질에 미치는 시효의 영향)

  • Kim, Soon Ho
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 1999
  • This study has investigated the effect of aging treatment on the microstructure and mechanical properties of Mg-6Al-xZn(x = 1.5, 2.5) alloys fabricated by the squeeze casting process. The microstructures of as-squeeze cast were composed of pro-eutectic ${\alpha}$, super saturated ${\alpha}$ and ${\beta}(Mg_{17}Al_{12})$ compound. Aged at both $200^{\circ}C$ and $240^{\circ}C$, Mg-6Al-xZn alloys showed the peak hardness due to the formation of ${\beta}(Mg_{17}Al_{12})$ precipitates. The discontinuous precipitates of the lamella type are predominant at $200^{\circ}C$ aging treatment, while the finely dispersed continuous precipitates were dominant at $240^{\circ}C$ aging treatment. Mg-6Al-xZn alloys fabricated by the squeeze casting process had the better combination of tensile strength and elongation compared to the conventionally cast alloys. As zinc contents increased, the tensile strength was increased by the solid solution strengthening effect of zinc.

  • PDF

A Characteristics of Zn-Al-Cu System Pb-free Solder Alloys for Ultra High Temperature Applications (초고온용 Zn-Al-Cu계 Pb-free 솔더 합금의 특성)

  • Kim Seong-Jun;Na Hye-Seong;Han Tae-Kyo;Lee Bong-Keun;Kang Cung-Yun
    • Journal of Welding and Joining
    • /
    • v.23 no.6
    • /
    • pp.93-98
    • /
    • 2005
  • The purpose of this study is to investigate the characteristics of pb-free $Zn-(3\~6)\%Al-(1\~6)\%Cu$ solder alloys for ultra high temperature(>573K) which applied to air craft, space satellite, automotive, oil, gas well exploration and data logging of geo-thermal wells. Melting range, solderability, electric resistivity, microstructure and mechanical properties were examined with solder alloys casted in Ar gas atmosphere. $Zn-4\%Al-(1\~3)\%Cu,\;Zn-5\%Al-(2\~4)\%Cu\;and\;Zn-6\%Al-(3\~5)\%Cu$ alloys satisfied the optimum melting range of 643 to 673k for ultra high temperature solder. A melting temperature increased with increasing Cu content, but decreased with increasing Al content. The spreadability was improved with increasing hi content. But the content of Cu had no effect on the spreadability. The electric resistivity was lowered with increasing Al and decreasing Cu content. In all Zn-Al-Cu solder alloys, primary dendritic $\varepsilon$ phase(Zn-Cu), dendritic $\eta$ phase(Zn-Cu-Al), $\alpha(Al-Zn)-\eta$ eutectic and eutectoid phase were observed. The addition of Al increased the volume fraction of eutectic and eutectoid phase and it decreased f phases. Also, the addition of Cu increased slightly the volume fraction of e, the eutectic and eutectoid phases. With increasing total content of Al and Cu, a hardness and a tensile strength were linearly increased, but anelongation was linearly decreased.

Effects of Mg and Cu Amounts on the Casting Characteristics and Tensile Property of Al-Zn-Mg-Cu Alloys (Al-Zn-Mg-Cu 합금의 주조성 및 인장특성에 미치는 Mg 및 Cu 첨가량의 영향)

  • Kim, Ki-Tae;Lim, Young-Suk;Kim, Jeong-Min
    • Journal of Korea Foundry Society
    • /
    • v.32 no.1
    • /
    • pp.38-43
    • /
    • 2012
  • The effects of Mg and Cu amounts on the casting characteristics and tensile property of Al-Zn-Mg-Cu alloys were investigated for the development of high strength aluminium alloys for gravity mold casting. Increase of copper amounts in Al-6%Zn-3%Mgy% Cu alloys resulted in reduction of the fluidity of these alloys and had little effects on the tensile property of these alloys. Increase of magnesium amounts from 1.0wt% to 3.3wt% in Al-6%Zn-x%Mg-0.5%Cu alloys resulted in reduction of the elongation of these alloys from 12% to 3% and increase of the tensile strength of these alloys from 340MPa to 450MPa, but had little effects on the fluidity of these alloys.

Effect of Al and Mg Contents on Wettability and Reactivity of Molten Zn-Al-Mg Alloys on Steel Sheets Covered with MnO and SiO2 Layers

  • Huh, Joo-Youl;Hwang, Min-Je;Shim, Seung-Woo;Kim, Tae-Chul;Kim, Jong-Sang
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1241-1248
    • /
    • 2018
  • The reactive wetting behaviors of molten Zn-Al-Mg alloys on MnO- and amorphous (a-) $SiO_2$-covered steel sheets were investigated by the sessile drop method, as a function of the Al and Mg contents in the alloys. The sessile drop tests were carried out at $460^{\circ}C$ and the variation in the contact angles (${\theta}_c$) of alloys containing 0.2-2.5 wt% Al and 0-3.0 wt% Mg was monitored for 20 s. For all the alloys, the MnO-covered steel substrate exhibited reactive wetting whereas the $a-SiO_2$-covered steel exhibited nonreactive, nonwetting (${\theta}_c>90^{\circ}$) behavior. The MnO layer was rapidly removed by Al and Mg contained in the alloys. The wetting of the MnO-covered steel sheet significantly improved upon increasing the Mg content but decreased upon increasing the Al content, indicating that the surface tension of the alloy droplet is the main factor controlling its wettability. Although the reactions of Al and Mg in molten alloys with the $a-SiO_2$ layer were found to be sluggish, the wettability of Zn-Al-Mg alloys on the $a-SiO_2$ layer improved upon increasing the Al and Mg contents. These results suggest that the wetting of advanced high-strength steel sheets, the surface oxide layer of which consists of a mixture of MnO and $SiO_2$, with Zn-Al-Mg alloys could be most effectively improved by increasing the Mg content of the alloys.

Differences in Cold Rolling Workability and Mechanical Properties between Al-Mg-Si and Al-Mg-Zn System Alloys with Cold Rolling (냉간압연가공에 따른 Al-5.5Mg-2.9Si계와 Al-7Mg-0.9Zn계 합금의 압연가공성 및 기계적 특성 차이)

  • Yang, Ji-Hun;Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.26 no.11
    • /
    • pp.628-634
    • /
    • 2016
  • The cold rolling workability and mechanical properties of two new alloys, designed and cast Al-5.5Mg-2.9Si and Al-7Mg-0.9Zn alloys, were investigated in detail. The two alloy sheets of 4 mm thickness, 30 mm width and 100 mm length were reduced to a thickness of 1 mm by multi-pass rolling at ambient temperature. The rolling workability was better for the Al-7Mg-0.9Zn alloy than for the Al-5.5Mg-2.9Si alloy; in case of the former alloy, edge cracks began to occur at 50% rolling reduction, and their number and length increased with rolling reduction; however, in the latter alloy, the sheets did not have any cracks even at higher rolling reduction. The mechanical properties of tensile strength and elongation were also better in the Al-7Mg-0.9Zn alloy than in Al-5.5Mg-2.9Si alloy. Work hardening ability after cold rolling was also higher in the Al-7Mg-0.9Zn alloy than in the Al-5.5Mg-2.9Si alloy. At the same time, the texture development was very similar for both alloys; typical rolling texture developed in both alloys. These differences in the two alloys can primarily be explained by the existence of precipitates of $Mg_2Si$. It is concluded that the Al-7Mg-0.9Zn alloy is better than the Al-5.5Mg-2.9Si alloy in terms of mechanical properties.