• 제목/요약/키워드: Al addition

검색결과 2,639건 처리시간 0.027초

해양환경용 알루미늄 합금의 플라즈마 전해 산화 시 표면 특성에 관한 불화칼륨(KF)의 영향 (Influences of Potassium Fluoride (KF) Addition on the Surface Characteristics in Plasma Electrolytic Oxidation of Marine Grade Al Alloy)

  • 이정형;김성종
    • 한국표면공학회지
    • /
    • 제49권3호
    • /
    • pp.280-285
    • /
    • 2016
  • In this study, we investigated the influences of potassium fluoride(KF) addition on the surface characteristics of plasma electrolytic oxidation(PEO) coating produced on Al alloy. The PEO of marine grade Al alloy(5083 grade) was conducted in KOH 1g/L solution adding different concentrations of KF(0, 1 and 2 g/L) under a galvanostatic regime. With KF addition, unusual behavior was observed on the voltage-time characteristic curves, which can be characterized by the following process: (i) initial rapid increase in voltage (ii) a short plateau after 1st breakdown (iii) gradual increase in voltage (iv) intermittent fluctuation of voltage after 2nd breakdown. The SEM observation revealed irregular surface morphology with KF addition, as compared with one formed without KF addition, which had a reticulate structure. The XRD analysis detected the formation of aluminium hydroxide fluoride hydrate($H_{4.76}Al_2F_{3.24}O_{3.76}$) on surface grown by PEO process with KF. Particularly, at very early stage of the process (~ 120 s), thin film was formed having nanoporous structure, and F element was confirmed on surface by EDS analysis. The thickness and surface roughness of the coating increased with increasing KF concentration. As a result, KF addition was found to be less beneficial influences on PEO of marine grade Al alloy, and therefore needs further research to improve its capability.

AlN-Al2O3 계에서의 상압소결 질화물복합체 (Pressureless Sintered Nitride Composites in the AlN-Al2O3 System)

  • 김영우;김규헌;김동현;윤석영;박홍채
    • 한국세라믹학회지
    • /
    • 제51권5호
    • /
    • pp.498-504
    • /
    • 2014
  • Particulate nitride composites have been fabricated by sintering the compacted powder of AlN and 5 - 64.3 mol% $Al_2O_3$, with a small addition of $Y_2O_3$ ($Y_2O_3$/AlN, 1 wt%), in 1-atm nitrogen gas at $1650-1900^{\circ}C$. The composites were characterized in terms of sintering behavior, phase relations, microstructure and thermal shock resistance. AlN, 27R AlN pseudopolytype, and alminium oxynitride (AlON, $5AlN{\cdot}9Al_2O_3$) were found to existin the sintered material. Regardless of batch composition, the AlN-$Al_2O_3$ powder compacts exhibited similar sintering behavior; however, the degree of shrinkage commonly increased with increasing $Al_2O_3$ content, consequently giving high sintered bulk density. By increasing the $Al_2O_3$ addition up to ${\geq}50 mol%$, the matrix phase in the sintered material was converted from AlN or 27R to AlON. Above $1850^{\circ}C$, a liquid phase was formed by the reaction of $Al_2O_3$ with AlN, aided by $Y_2O_3$ and mainly existed at the grain boundaries of AlON. Thermal shock resistance was superior in the sintered composite consisting of AlON with dispersed AlN or AlN matrix phase.

이온플레이팅법으로 제조된 TiAlLaN계 박막의 산화속도 (Oxidation Rates of TiAlLaN Thin Films Deposited by Ion Plating)

  • 서성만;이기선;이기안
    • 한국재료학회지
    • /
    • 제14권3호
    • /
    • pp.163-167
    • /
    • 2004
  • TiAl(La)N thin films were oxidized in vacuum of about 7 Pa to reduce the oxidation of WC-Co as a substrate. The oxidation rate constants of the thin films were quantified by an assumption of parabolic oxidation. Increasing AI content significantly decreased the parabolic oxidation rate constant. A simultaneous addition of AI and La was more effective to reduce the oxidation rate. The parabolic oxidation rate constant of $Ti_{0.66}$ $Al_{0.32}$ $La_{ 0.02}$N thin film at 1273 K showed about ten times lower than that of TiN. The addition of a small amount of La with Al induced the preferential formation of dense $\alpha$ $-Al_2$$O_3$ film in oxide film, leading to the abrupt reduction of oxidation rate.

Al-Cu-Li-X(In,Be) 합금(合金)의 조직(組織)과 기계적성질(機械的性質)의 상호관계(相互關係) (Interrelationship between Structure and Mechanical Properties of Al-Cu-Li-X(In,Be) Alloy)

  • 이승호;이종수;김석원;우기도
    • 한국주조공학회지
    • /
    • 제15권4호
    • /
    • pp.351-359
    • /
    • 1995
  • The effects of In and Be additions on the aging behaviors and mechanical properties in the Al-Cu-Li alloy were investigated using the transmission electron microscope, the scanning electron microscope, hardness and tensile strength measurement. The aging is promoted and the double hardness peak is appeared by the addition of In and Be in the Al-Cu-Li alloy. The strength is increased, but the elongation and toughness are decreased by the addition of In in the Al-Cu-Li alloy. And the Al-Cu-Li-In-Be alloy has good combination with the strength, the elogation and toughness than Al-Cu-Li-In alloy.

  • PDF

$Al_2O_3/SiC$ 나노복합체의 상압소결 및 역학적 특성에 미치는 볼밀분쇄와 소결온도의 영향 (The Effect of Ball Milling and Sintering Temperatures on the Sintering Behaviors and Mechanical Properties of $Al_2O_3/SiC$ Nanocomposites)

  • 류정호;나석호;이재형;조성재
    • 한국세라믹학회지
    • /
    • 제34권6호
    • /
    • pp.668-676
    • /
    • 1997
  • Al2O3/SiC nanocomposites are fabricated through intensive ball milling to mix fine SiC particles uniformly with the Al2O3 powder. Another role of milling is to reduce particle sizes by crushing particles as well as agglomerates. However, balls are worn during ball milling and the sample powder mixtures pick up to weight loss of the balls. In this study, pressureless sintering was performed to obtain Al2O3/SiC nanocomposites. It was found that the wear rate of zirconia balls during milling was considerable, and the zirconia addition after even a few hours of ball milling could increase the sintering rates of the nanocomposites significantly. Thus, addition of ZrO2 changed the sintering behaviors as well as mechanical properties of Al2O3/SiC nanocomposites.

  • PDF

Sm 첨가에 따른 Al-Si-Cu 알루미늄 합금의 미세조직 및 열전도도 변화 (Effect of Samarium Addition on Microstructure and Thermal Conductivity of Al-Si-Cu Aluminum Alloy)

  • 최진주;강유빈;임병용;이찬기;김한구;박광훈;김대근
    • 한국재료학회지
    • /
    • 제30권1호
    • /
    • pp.31-37
    • /
    • 2020
  • In this study, the effects of Sm addition (0, 0.05, 0.2, 0.5 wt%) on the microstructure, hardness, and electrical and thermal conductivity of Al-11Si-1.5Cu aluminum alloy were investigated. As a result of Sm addition, increment in the amount of α-Al and refinement of primary Si from 70 to 10 ㎛ were observed due to eutectic temperature depression. On the other hand, Sm was less effective at refining eutectic Si because of insufficient addition. The phase analysis results indicated that Sm-rich intermetallic phases such as Al-Fe-Mg-Si and Al-Si-Cu formed and led to decrements in the amount of primary Si and eutectic Si. These microstructure changes affected not only the hardness but also the electrical and thermal conductivity. When 0.5 wt% Sm was added to the alloy, hardness increased from 84.4 to 91.3 Hv, and electric conductivity increased from 15.14 to 16.97 MS/m. Thermal conductivity greatly increased from 133 to 157 W/m·K.

Al 첨가 TWIP강에서의 지연파괴에 대한 변형유기 마르텐사이트 변태의 영향 (Effects of the Strain Induced Martensite Transformation on the Delayed Fracture for Al-added TWIP Steel)

  • 김영우;강남현;박영도;최일동;김교성;김성규;조경목
    • 대한금속재료학회지
    • /
    • 제46권12호
    • /
    • pp.780-787
    • /
    • 2008
  • For the advanced high strength steels (AHSS), high-manganese TWIP (twinning induced plasticity) steels exhibit high tensile strength (800-1000 MPa) and high elongation (50-60%). However, the TWIP steels need to be understood of delayed fracture following the cup drawing test. Among the factors to cause delayed fracture, i.e, martensite transformation, hydrogen embrittlement and residual stress, the effects of martensite transformation (${\gamma}{\rightarrow}{\varepsilon}$ or ${\gamma}{\rightarrow}{\alpha}^{\prime}$) were investigated on the delayed fracture phenomenon. Microstructural phase analysis was conducted for cold rolled (20, 60, 80% reduction ratio) steels and tensile deformed (20, 40, 60% strain) steels. For the Al-added TWIP steels, no martensite phase was found in the cold rolled and tensile deformed specimen. But, the TWIP steels with no Al addition indicated the martensite transformation. The cup drawing specimens showed the martensite transformation irrespective of the Al-addition to the TWIP steel. However, the TWIP steel with no Al exhibited the larger amount of martensite than the case of the TWIP steel with Al addition. For the reason, it was possible to conclude that the Al addition suppressed the martensite transformation in TWIP steels, therefore preventing the delayed fracture effectively. However, it was interesting to note that the mechanism of delayed fracture should be incorporated with hydrogen embrittlement and/or residual stress as well as the martensite transformation.

The Effect of Lithia Addition on the Sodium Ion Conductivity of Vapor Phase Converted Na-β"-alumina/YSZ Solid Electrolytes

  • Sasidharanpillai, Arun;Kim, Hearan;Cho, Yebin;Kim, Dongyoung;Lee, Seungmi;Jung, Keeyoung;Lee, Younki
    • 전기화학회지
    • /
    • 제25권4호
    • /
    • pp.191-200
    • /
    • 2022
  • Na-β"-Al2O3 has been widely employed as a solid electrolyte for high-temperature sodium (Na) beta-alumina batteries (NBBs) thanks to its superb thermal stability and high ionic conductivity. Recently, a vapor phase conversion (VPC) method has been newly introduced to fabricate thin Na-β"-Al2O3 electrolytes by converting α-Al2O3 into β"-Al2O3 in α-Al2O3/yttria-stabilized zirconia (YSZ) composites under Na+ and O2- dual percolation environments. One of the main challenges that need to be figured out is lowered conductivity due to the large volume fraction of the non-Na+-conducting YSZ. In this study, the effect of lithia addition in the β"-Al2O3 phase on the grain size and ionic conductivity of Na-β"-Al2O3/YSZ solid electrolytes have been investigated in order to enhance the conductivity of the electrolyte. The amount of pre-added lithia (Li2O) precursor as a phase stabilizer was varied at 0, 1, 2, 3, and 4 mol% against that of Al2O3. It turns out that ionic conductivity increases even with 1 mol% lithia addition and reaches 67 mS cm-1 at 350 ℃ of its maximum with 3 mol%, which is two times higher than that of the undoped composite.

CeO2안정화 정방정 Zirconia 다결정체(Ce-TZP)에 관한 연구(III) : Ce-TZP의 기계적성질 및 미세조직에 미치는 Al2O3첨가의 영향 (A Study on the Ceria Stabilized Tetragonal Zirconia Polycrystals(Ce-TZP)(III) : Effect of Al2O3 Addition on the Mechanical Properities and Microstructures of Ce-TZP)

  • 김문일;박정현;강대석;문성환;안계원
    • 한국세라믹학회지
    • /
    • 제27권1호
    • /
    • pp.55-61
    • /
    • 1990
  • Effect of Al2O3 addition on the mechanical properties and microstructure of Ce-TZP were studied. 12, 14, 16Ce-TZP containing 0-40wt% Al2O3 were prepared by sintering at 155$0^{\circ}C$ for 2h. in air. Density, linear shrinkage, bending strength, Vickers hardness, microstructuer and the amount of stress induced phase transformation were examined. Vickers hardness increased linearly with increasing amounts of Al2O3. The amount of transformation and fracture toughness decreased linearly with increasing amount of Al2O3. Linear shrinkage and relative density decreased with increasing Al2O3 content in all composition of Ce-TZP. Grain growth of Ce-TZP was inhibited by Al2O3 dispersion and fracture mode of Ce-TZP/Al2O3 composites transformed from intergranular to transgranular fracture as the amount of Al2O3 increased. TEM observation revealed that Al2O3 particles were located mainly at grain boundaries of ZrO2.

  • PDF

Al-Li-(Be)합금 주괴의 미세조직과 기계적 성질 (Microstructure and Mechanical Properties in Al-Li-(Be) Alloys.)

  • 은일상;조현기
    • 한국주조공학회지
    • /
    • 제10권5호
    • /
    • pp.417-425
    • /
    • 1990
  • The purpose of this study is to investigate the effect of Be addition on the microstructure and mechanical properties of as-cast and homogenization treated Al-Li-(Be)alloys. The ductility of as-cast Al-Li alloy was increased by the addition of Be and the fracture morphology was changed from brittle to ductile mode. Also, hardness and strength have been decreased by homogenization treatment. The morphology of eutectic structure which consists of ${\alpha}(Al)$ and ${\alpha}(Be)$ was changed from lammellae to spherical type by homogenization treatment. The shape of ${\alpha}(Be)$ phase has been revealed as hollow type by TEM observation. It consists of outer surfaces with well defined crystal facets and the core filled with ${\alpha}(Al)$. The microstructure of as-cast Al-Li-Be alloys showed coarse ${\delta}'$, fine ${\delta}'$, and coarse ${\delta}$ phases. The coarse and fine ${\delta}'$ phases were formed at Be-rich phase /matrix interfaces and in matrix, respectively. By homogenization treatment, the ${\delta}$ phase in Al-Li and Al-Li-Be alloys dissolved and the size of ${\delta}$ phase in Al-Li-Be alloys was finer than that of Al-Li alloy.

  • PDF