• Title/Summary/Keyword: Airtightness Performance

Search Result 52, Processing Time 0.027 seconds

An Analysis of the Airtightness Performance and Heating Energy Demand According to Building Structural Characteristics -Focused on Newly Apartment Houses- (건물 구조 특성에 따른 기밀성능 및 난방 에너지 요구량 분석 - 신축 공동주택 중심으로 -)

  • Lee, Su-In;Kim, Jeong-Gook;Kim, Seo-Hun;Kim, Jong-Hun;Jeong, Hak-Geun;Jang, Cheol-Yong
    • KIEAE Journal
    • /
    • v.15 no.2
    • /
    • pp.109-115
    • /
    • 2015
  • Purpose: The importance of building airtightness is increased as the demand and expectation of building energy efficiency is growing. Previous research only focused on airtightness of building openings only to improve building airtightness. However, the analysis of difference of airtightness performance according to the characteristic of building structure has not been performed. Therefore, this study analyzed the difference of airtightness performance according to building structural characteristics in a number of ways. Method: Airtightness that are classified as rigid-frame type or wall type are measured and analyzed the difference of airtightness performance between rigid frame type apartments and wall type apartments. This study calculated the heating energy demand and quantitatively analysis using ISO 13790. Futhermore, this study compared research trend of domestic airtightness performance with airtightness standards of the developed countries based on the field measurement. Result: Airtight performance of wall type is better than rigid frame type in terms of energy saving. The difference of heating energy demand between wall type and rigid frame type was $8.14kWh/m^2yr$.

The Measurement of Airtightness Performance of Multi-Family Housing (다가구 및 다세대 원룸주택의 기밀성능 실측연구)

  • Baek, Nam-Choon;Han, Seung-Hyeon;Lee, Wang-Je;Yoon, Jong-Ho;Shin, U-Cheul
    • KIEAE Journal
    • /
    • v.14 no.5
    • /
    • pp.117-121
    • /
    • 2014
  • Even though a study of airtightness performance of apartment and detached house have been done constantly, there are few of studies of multi-family housing which increasing every year. Therefore, this study analyzed airtightness performance of 20 households of one room in Daejeon to investigate airtightness performance standard. All experiments were performed under the same conditions except sealing windows to investigate airtightness performance without sealing windows (natural condition) and airtightness performance with sealing windows of studio apartment. As results, (1) average ACH50 without sealing windows was 19.2/h for pressurization, and 12.8/h for depressurization and (2) average ACH50 with sealing windows was 16.0/h for pressurization, and 10.7/h for depressurization and ACH50 in both condition, ACH50 under pressurization was about 50% higher than that under depressurization. Throughout this experiment, we can figure out that about 16% of air infiltration rate is occurred in windows, and the other 84% is occurred in rest of places such as Junction structure, socket and ventilating opening.

A Study on the Airtightness Performance of New Han-ok Bedrooms (신한옥 침실 공간의 기밀성능 평가 연구)

  • Lee, Ju-Yeob;Jang, Hyeon-Chung;Lee, Tai-Gang;Song, Min-Jeong;Kim, Sun-Woo
    • KIEAE Journal
    • /
    • v.13 no.3
    • /
    • pp.79-89
    • /
    • 2013
  • The purpose of this study is to evaluate the airtightness performance of New Han-ok and to supply fundamental data for standards establishment. Air leakage testings were accomplished by means of blower door test in 26 bedrooms of 16 Han-oks located in Jeonnam happy villages. Followings are results. 1) Air change per hour at 50 Pa(ACH50) is located on 8.42~78.38. 2) No correlation between ACH50 and volumes, floor area, above grade surface area. 3) The more wood structural elements are exposed, attached spaces, wooden sliding and casement windows, the less airtightness performance. 4) An Airtightness with ACH50/20(NL, Normalized leakage) is located on 0.42~3.92 and building leakage class following F(4%), G(11%, sufficiently leaky, No need mechanical ventilation), H(4%, Need of cost-effective tightening), I(31%), J(50%) by a single-story house the normalized leakage of ASHRAE.

The measurement study on the airtightness of dwellings based on the passive design (패시브 디자인을 적용한 주택의 기밀성에 관한 실측 사례 연구)

  • Lee, Tae-Goo;Yun, Doo-Young
    • KIEAE Journal
    • /
    • v.13 no.2
    • /
    • pp.13-20
    • /
    • 2013
  • Today, the world energy consumption in buildings occupies more than 30%. In our country, the energy consumption in buildings also occupies 25% of the entire national energy consumption. With the increasing demand of energy saving in architectural fields, there is a more interest in low-energy construction. For these low-energy housings, our country is planning to apply the energy-saving design standards at the level of passive houses in 2017. However, there is still a limitation in energy saving only with the standards on the performance of envelope in buildings. This means that unless a building is airtight even though it was well-insulated, cooling and heating energy consumption will increase due to the infiltration and leakage. Therefore, this study aims to make a comparative analysis of airtight performance by conducting a blower door test on the housings applied with passive designs, analyze the reasons why most houses fall short of the airtightness standards, and complement the airtightness problems in the inadequate parts of the buildings in order to save building energy.

Analysis of Airtightness and Air Leakage of Wooden Houses in Korea

  • Kim, Sejong;Chang, Yoon-Seong;Park, Joo-Saeng;Shim, Kug-Bo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.828-835
    • /
    • 2017
  • Airtightness of buildings is one of critical aspects of its energy performance. To build up references of airtightness of wooden houses built in Korea, blower door tests have been carried out in 42 houses since 2006. Causes of air leakage were investigated recently. The average value of air change rate was $3.7h^{-1}$ for light frame house and $5.5h^{-1}$ for post-beam construction at ACH50 (air change per hour at 50 Pa air pressure difference). Foam type insulation was more advantageous in ensuring building airtightness than glass fiber batt. Airtightness of wooden houses which were constructed after 2010 was improved to have less than $1.5h^{-1}$ of ACH50, threshold for application of artificial air change. The average air change rate of CLT (cross laminated timber) houses showed the lowest value, $1.1h^{-1}$, among the tested structures.

A Correlation Analysis between the Airtightness and Sound Insulation Performance on the Opening Spaces of Han-style Windows (한식 창호의 개구 면적에 따른 기밀 및 차음 성능간 상관성 연구)

  • Lee, Ju-Yeob;Jang, Hyeon-Chung;Lee, Tai-Gang;Song, Min-Jeong;Kim, Sun-Woo
    • KIEAE Journal
    • /
    • v.14 no.3
    • /
    • pp.87-95
    • /
    • 2014
  • The purpose of this study is to evaluate the correlation coefficients between the airtightness and sound insulation performance of Han-style windows in New Han-ok. To achieve these goals, field measurements were accomplished in 18 bedrooms of 16 Han-oks in which actual residents were living, and then lab measurements were proceeded in the reverberation lab for evaluating the sound insulation performance. Followings are results. The results of the correlation analysis between the airtightness(Air change per hour at 50 Pa, ACH50) and sound insulation performance(Sound reduction index, Rw) in bedrooms of actual Han-oks, it was found that there were no significant correlation between two evaluating values. On the other hand, it was analyzed that the correlation coefficients of total 24 structures(double casement windows, single casement window, casement and sliding windows, single sliding window, 6 types per each structure) were located on 0.6757 exponentially and 0.4154 lineary in the lab evaluating conditions. But, The results of evaluating 4 structure classificatorily, it was found that there were high correlation coefficients(0.8665~0.9273 at ACH50, 0.8414~0.9346 at Rw). These results were signified that the correlation coefficients were changed according to the each structure and case by case analysis were necessary at the same time.

Airtightness of Light-Frame Wood Houses built in Daejeon and Chungnam Area

  • Jang, Sang-sik;Ha, Been
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.2
    • /
    • pp.147-158
    • /
    • 2017
  • Among the energy consumption in building, the heating energy takes the largest part. Therefore, it is important to minimize the heat energy loss in building for the reduction of overall energy use in construction. The most important points for the minimization of energy loss in building are insulation and airtightness. Especially, in wood houses, airtightness is very important for energy saving as well as increase of durability. However, the researches on airtightness of wood buildings have been started recently and are very deficient especially in Korea. In this study, air leakage properties and airtightness performance were evaluated for light-frame wood houses built in Daejeon and Chungnam area. Total 7 houses were evaluated, among which four houses (Case 1 to Case 4) were in the construction stage before interior finish and the other three houses (Case 5 to Case 7) were after completion of construction work. The tests for airtightness were conducted by pressurization-depressurization method, and the factors included in the measurements includes air leakage rate at 50 Pa (CMH50), air change rate at 50 Pa (ACH50), equivalent leakage area (EqLA) and EqLA per floor area. As a result of this study, key air leakage points in wood houses were found to be the gaps between floor and wall, the holes for wiring and plumbing, the double glasses windows and the entrance doors. The average value of ACH50 for the houses after completion of construction work was $3.5h^{-1}$ that was similar to Europe standard ($3.0h^{-1}$). ACH50 was proportional to EqLA per floor area but inversely proportional to the internal volume, the net floor area and the area of window.

A Study on the Measurement of Airtightness Performance of Detached Houses in Chung-cheong area (충청지역 단독주택의 기밀성능 실측 연구)

  • Yoon, Jong-Ho;Park, Jae-Wan;Lee, Kwang-Sung;Baek, Nam-Choon;Shin, U-Cheul
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.5
    • /
    • pp.65-71
    • /
    • 2008
  • The purpose of this study is to investigate an airtightness of typical Korean detached houses with field measurements. Air leakage testings by means of blower door test in accordance with ASTM E79-8 were measured in 22 detached dwellings in Daejeon and Geumsan. The results showed that detached dwellings have an average airtightness with ACH50/20 (air chang per hour at a pressure difference of 50 Pa between inside outside) of 0.82 $hr^{-1}$ which is a higher range than for typical apartments and leakage class G by normalized leakage area of ASHRAE.

An Analysis of the Building Energy Demand of Rural House and Passive type House - An Analysis of the Airtightness and Window system Performance according to using PHPP (기존 농촌주택과 패시브형 주택의 에너지 요구량 비교분석 - PHPP분석을 통한 주택의 기밀성 및 창호성능 분석을 중심으로)

  • Cho, Kyung-Min;Lee, Tae-Goo;Kim, Joo-Soo
    • KIEAE Journal
    • /
    • v.11 no.4
    • /
    • pp.55-61
    • /
    • 2011
  • Due to global warming issues caused by climate changes which are internationally being highlighted, recently, there are lots of efforts under way to reduce energy consumption in various fields. Currently, 25 percent of energy consumption in Korea are being generated from buildings and especially, nearly 54 percent of them are being consumed by households. This study, therefore, aims to consider energy consumption status in the existing rural houses and analyze structure system performance, window system performance and air-permeability of domestic passive-type buildings using PHPP which is an analysis program of building energy to improve energy consumption problems in rural areas. Then, energy reduction plans in rural houses were proposed, by comparing and analyzing energy reduction of the existing rural houses, based on these data.

Insulation Details and Energy Performance of Post-Beam Timber House for Insulation Standards (단열 기준에 따른 기둥-보 목조주택의 단열 상세 및 에너지 성능)

  • Kim, Sejong;Park, Joo-Saeng
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.876-883
    • /
    • 2015
  • Han-green project, which pursues Korean style post and beam timber house with traditional construction technique of Han-ok, has been carried out in KFRI (Korea Forest Research Institute) since 2006. Recently, the improvement of its building energy performance was studied with energy-saving elements. This study was conducted to provide the insulation details of building envelopes in a post-beam timber house for recent enhanced insulation standards and following effect on building energy performance. The level of thermal transmittance (U-value) values of building envelopes was composed of two stages: present Korean insulation standards and passive house. To evaluate building energy performance, the building airtightness values of two stages was ACH50 = $3.0h^{-1}$ for common domestic timber house constructed recently, and ACH50 = $0.6h^{-1}$ for passive house. Consequently, four cases of the building energy performance according to the combination of U-value with airtightness were evaluated. The test house for evaluation was located in Seoul and its energy performance was evaluated with CE3 commercial building energy simulation program. The result showed that enhanced insulation from level I to II reduced $14kWh/(m^2{\cdot}a)$ of annual heating energy demand regardless of airtightness.